Analog Circuit Design using Genetic Algorithm: Modified

Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to analog circuit design automation. These researches show a better performance due to the nature of Genetic Algorithm. In this paper a modified Genetic Algorithm is applied for analog circuit design automation. The modifications are made to the topology of the circuit. These modifications will lead to a more computationally efficient algorithm.

Automatic Segmentation of Thigh Magnetic Resonance Images

Purpose: To develop a method for automatic segmentation of adipose and muscular tissue in thighs from magnetic resonance images. Materials and methods: Thirty obese women were scanned on a Siemens Impact Expert 1T resonance machine. 1500 images were finally used in the tests. The developed segmentation method is a recursive and multilevel process that makes use of several concepts such as shaped histograms, adaptative thresholding and connectivity. The segmentation process was implemented in Matlab and operates without the need of any user interaction. The whole set of images were segmented with the developed method. An expert radiologist segmented the same set of images following a manual procedure with the aid of the SliceOmatic software (Tomovision). These constituted our 'goal standard'. Results: The number of coincidental pixels of the automatic and manual segmentation procedures was measured. The average results were above 90 % of success in most of the images. Conclusions: The proposed approach allows effective automatic segmentation of MRIs from thighs, comparable to expert manual performance.

Dynamic Authenticated Secure Group Communication

Providing authentication for the messages exchanged between group members in addition to confidentiality is an important issue in Secure Group communication. We develop a protocol for Secure Authentic Communication where we address authentication for the group communication scheme proposed by Blundo et al. which only provides confidentiality. Authentication scheme used is a multiparty authentication scheme which allows all the users in the system to send and receive messages simultaneously. Our scheme is secure against colluding malicious parties numbering fewer than k.

Pseudo-polynomial Motion Commands for Vibration Suppression of Belt-driven Rotary Platforms

The motion planning technique described in this paper has been developed to eliminate or reduce the residual vibrations of belt-driven rotary platforms, while maintaining unchanged the motion time and the total angular displacement of the platform. The proposed approach is based on a suitable choice of the motion command given to the servomotor that drives the mechanical device; this command is defined by some numerical coefficients which determine the shape of the displacement, velocity and acceleration profiles. Using a numerical optimization technique, these coefficients can be changed without altering the continuity conditions imposed on the displacement and its time derivatives at the initial and final time instants. The proposed technique can be easily and quickly implemented on an actual device, since it requires only a simple modification of the motion command profile mapped in the memory of the electronic motion controller.

Roundness Deviation Measuring Strategy at Coordination Measuring Machines and Conventional Machines

Today technological process makes possible surface control of producing parts which is needful for product quality guarantee. Geometrical structure of part surface includes form, proportion, accuracy to shape, accuracy to size, alignment and surface topography (roughness, waviness, etc.). All these parameters are dependence at technology, production machine parameters, material properties, but also at human, etc. Every parameters approves at total part accuracy, it is means at accuracy to shape. One of the most important accuracy to shape element is roundness. This paper will be deals by comparison of roughness deviations at coordination measuring machines and at special single purpose machines. Will describing measuring by discreet method (discontinuous) and scanning method (continuous) at coordination measuring machines and confrontation with reference method using at single purpose machines.

Mobility Management Enhancement for Transferring AAA Context in Mobile Grid

Adapting wireless devices to communicate within grid networks empowers us by providing range of possibilities.. These devices create a mechanism for consumers and publishers to create modern networks with or without peer device utilization. Emerging mobile networks creates new challenges in the areas of reliability, security, and adaptability. In this paper, we propose a system encompassing mobility management using AAA context transfer for mobile grid networks. This system ultimately results in seamless task processing and reduced packet loss, communication delays, bandwidth, and errors.

Solving an Extended Resource Leveling Problem with Multiobjective Evolutionary Algorithms

We introduce an extended resource leveling model that abstracts real life projects that consider specific work ranges for each resource. Contrary to traditional resource leveling problems this model considers scarce resources and multiple objectives: the minimization of the project makespan and the leveling of each resource usage over time. We formulate this model as a multiobjective optimization problem and we propose a multiobjective genetic algorithm-based solver to optimize it. This solver consists in a two-stage process: a main stage where we obtain non-dominated solutions for all the objectives, and a postprocessing stage where we seek to specifically improve the resource leveling of these solutions. We propose an intelligent encoding for the solver that allows including domain specific knowledge in the solving mechanism. The chosen encoding proves to be effective to solve leveling problems with scarce resources and multiple objectives. The outcome of the proposed solvers represent optimized trade-offs (alternatives) that can be later evaluated by a decision maker, this multi-solution approach represents an advantage over the traditional single solution approach. We compare the proposed solver with state-of-art resource leveling methods and we report competitive and performing results.

Automated Inspection Algorithm for Thick Plate Using Dual Light Switching Lighting Method

This paper presents an automated inspection algorithm for a thick plate. Thick plates typically have various types of surface defects, such as scabs, scratches, and roller marks. These defects have individual characteristics including brightness and shape. Therefore, it is not simple to detect all the defects. In order to solve these problems and to detect defects more effectively, we propose a dual light switching lighting method and a defect detection algorithm based on Gabor filters.

Road Extraction Using Stationary Wavelet Transform

In this paper, a novel road extraction method using Stationary Wavelet Transform is proposed. To detect road features from color aerial satellite imagery, Mexican hat Wavelet filters are used by applying the Stationary Wavelet Transform in a multiresolution, multi-scale, sense and forming the products of Wavelet coefficients at a different scales to locate and identify road features at a few scales. In addition, the shifting of road features locations is considered through multiple scales for robust road extraction in the asymmetry road feature profiles. From the experimental results, the proposed method leads to a useful technique to form the basis of road feature extraction. Also, the method is general and can be applied to other features in imagery.

A Computer Model of Quantum Field Theory

This paper describes a computer model of Quantum Field Theory (QFT), referred to in this paper as QTModel. After specifying the initial configuration for a QFT process (e.g. scattering) the model generates the possible applicable processes in terms of Feynman diagrams, the equations for the scattering matrix, and evaluates probability amplitudes for the scattering matrix and cross sections. The computations of probability amplitudes are performed numerically. The equations generated by QTModel are provided for demonstration purposes only. They are not directly used as the base for the computations of probability amplitudes. The computer model supports two modes for the computation of the probability amplitudes: (1) computation according to standard QFT, and (2) computation according to a proposed functional interpretation of quantum theory.

Design of Low-Area HEVC Core Transform Architecture

This paper proposes and implements an core transform architecture, which is one of the major processes in HEVC video compression standard. The proposed core transform architecture is implemented with only adders and shifters instead of area-consuming multipliers. Shifters in the proposed core transform architecture are implemented in wires and multiplexers, which significantly reduces chip area. Also, it can process from 4×4 to 16×16 blocks with common hardware by reusing processing elements. Designed core transform architecture in 0.13um technology can process a 16×16 block with 2-D transform in 130 cycles, and its gate count is 101,015 gates.

Syntactic Recognition of Distorted Patterns

In syntactic pattern recognition a pattern can be represented by a graph. Given an unknown pattern represented by a graph g, the problem of recognition is to determine if the graph g belongs to a language L(G) generated by a graph grammar G. The so-called IE graphs have been defined in [1] for a description of patterns. The IE graphs are generated by so-called ETPL(k) graph grammars defined in [1]. An efficient, parsing algorithm for ETPL(k) graph grammars for syntactic recognition of patterns represented by IE graphs has been presented in [1]. In practice, structural descriptions may contain pattern distortions, so that the assignment of a graph g, representing an unknown pattern, to a graph language L(G) generated by an ETPL(k) graph grammar G is rejected by the ETPL(k) type parsing. Therefore, there is a need for constructing effective parsing algorithms for recognition of distorted patterns. The purpose of this paper is to present a new approach to syntactic recognition of distorted patterns. To take into account all variations of a distorted pattern under study, a probabilistic description of the pattern is needed. A random IE graph approach is proposed here for such a description ([2]).

A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods

The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.

An Efficient Run Time Interface for Heterogeneous Architecture of Large Scale Supercomputing System

In this paper we propose a novel Run Time Interface (RTI) technique to provide an efficient environment for MPI jobs on the heterogeneous architecture of PARAM Padma. It suggests an innovative, unified framework for the job management interface system in parallel and distributed computing. This approach employs proxy scheme. The implementation shows that the proposed RTI is highly scalable and stable. Moreover RTI provides the storage access for the MPI jobs in various operating system platforms and improve the data access performance through high performance C-DAC Parallel File System (C-PFS). The performance of the RTI is evaluated by using the standard HPC benchmark suites and the simulation results show that the proposed RTI gives good performance on large scale supercomputing system.

Control Improvement of a C Sugar Cane Crystallization Using an Auto-Tuning PID Controller Based on Linearization of a Neural Network

The industrial process of the sugar cane crystallization produces a residual that still contains a lot of soluble sucrose and the objective of the factory is to improve its extraction. Therefore, there are substantial losses justifying the search for the optimization of the process. Crystallization process studied on the industrial site is based on the “three massecuites process". The third step of this process constitutes the final stage of exhaustion of the sucrose dissolved in the mother liquor. During the process of the third step of crystallization (Ccrystallization), the phase that is studied and whose control is to be improved, is the growing phase (crystal growth phase). The study of this process on the industrial site is a problem in its own. A control scheme is proposed to improve the standard PID control law used in the factory. An auto-tuning PID controller based on instantaneous linearization of a neural network is then proposed.

Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps

Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.

Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

Intelligent Agents for Distributed Intrusion Detection System

This paper presents a distributed intrusion detection system IDS, based on the concept of specialized distributed agents community representing agents with the same purpose for detecting distributed attacks. The semantic of intrusion events occurring in a predetermined network has been defined. The correlation rules referring the process which our proposed IDS combines the captured events that is distributed both spatially and temporally. And then the proposed IDS tries to extract significant and broad patterns for set of well-known attacks. The primary goal of our work is to provide intrusion detection and real-time prevention capability against insider attacks in distributed and fully automated environments.

Improved Modulo 2n +1 Adder Design

Efficient modulo 2n+1 adders are important for several applications including residue number system, digital signal processors and cryptography algorithms. In this paper we present a novel modulo 2n+1 addition algorithm for a recently represented number system. The proposed approach is introduced for the reduction of the power dissipated. In a conventional modulo 2n+1 adder, all operands have (n+1)-bit length. To avoid using (n+1)-bit circuits, the diminished-1 and carry save diminished-1 number systems can be effectively used in applications. In the paper, we also derive two new architectures for designing modulo 2n+1 adder, based on n-bit ripple-carry adder. The first architecture is a faster design whereas the second one uses less hardware. In the proposed method, the special treatment required for zero operands in Diminished-1 number system is removed. In the fastest modulo 2n+1 adders in normal binary system, there are 3-operand adders. This problem is also resolved in this paper. The proposed architectures are compared with some efficient adders based on ripple-carry adder and highspeed adder. It is shown that the hardware overhead and power consumption will be reduced. As well as power reduction, in some cases, power-delay product will be also reduced.

Effect of Clustering on Energy Efficiency and Network Lifetime in Wireless Sensor Networks

Wireless Sensor Network is Multi hop Self-configuring Wireless Network consisting of sensor nodes. The deployment of wireless sensor networks in many application areas, e.g., aggregation services, requires self-organization of the network nodes into clusters. Efficient way to enhance the lifetime of the system is to partition the network into distinct clusters with a high energy node as cluster head. The different methods of node clustering techniques have appeared in the literature, and roughly fall into two families; those based on the construction of a dominating set and those which are based solely on energy considerations. Energy optimized cluster formation for a set of randomly scattered wireless sensors is presented. Sensors within a cluster are expected to be communicating with cluster head only. The energy constraint and limited computing resources of the sensor nodes present the major challenges in gathering the data. In this paper we propose a framework to study how partially correlated data affect the performance of clustering algorithms. The total energy consumption and network lifetime can be analyzed by combining random geometry techniques and rate distortion theory. We also present the relation between compression distortion and data correlation.