Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation

Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.

The Role of Paraphrase in Interpreting Students’ Writing

To improve students’ skill, writing is the most challenging skill to be developed. The reason is that besides helping the students to develop their skill, this activity also helps them to express themselves. This paper depicts how paraphrasing is very helpful to interpret students’ writing. Syntactic units, used tenses and meanings will indeed change once the writings were paraphrased. The objectives of this research are to reveal the inappropriate structure of syntactic units, to show what types of sentences the students often make, and to show how paraphrasing can help to infer the message. The methodology of this research is descriptive qualitative research. In addition, theories of linguistics are also included. This includes theory of Syntax to describe syntactic units and tenses and theory of Semantics to describe theories of meaning and how paraphrasing works. The theories of general linguistics, grammar and writing are also provided to support the theories of Syntax and Semantics. The results of this research are concerned with how the message is received in the end. The message written in the students’ essay is not clear because of the improper structure of syntactic units and use of incorrect of tenses. The students tend to use simple sentences, compound sentences and complex sentences with a few mistakes in their writing. In addition, they tend to create unnecessary phrases. The last point is that this research shows how paraphrase works to attain complete meaning of a sentence.

The Emotional Life of Patients with Chronic Diseases: A Framework for Health Promotion Strategies

Being a patient with a chronic disease is both a physical and emotional experience. The ability to recognize a patient’s emotional health is an important part of a health care provider’s skills. For the purposes of this paper, emotional health is viewed as the way that we feel, and the way that our feelings affect us. Understanding the patient’s emotional health leads to improved provider-patient relationships and health outcomes. For example, when a patient first hears his or her diagnosis from a provider, they might find it difficult to cope with their emotions. Struggling to cope with emotions interferes with the patient’s ability to read, understand, and act on health information and services. As a result, the patient becomes more frustrated and confused, creating barriers to accessing healthcare services. These barriers are challenging for both the patient and their healthcare providers. There are five basic emotions that are part of who we are and are always with us: fear, anger, sadness, joy, and compassion. Living with a chronic disease however can cause a patient to experience and express these emotions in new and unique ways. Within the provider-patient relationship, there needs to be an understanding that each patient experiences these five emotions and, experiences them at different times. In response to this need, the paper highlights a health promotion framework for patients with chronic disease. This framework emphasizes the emotional health of patients.

Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics

In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.

Digital Transformation of Lean Production: Systematic Approach for the Determination of Digitally Pervasive Value Chains

The increasing digitalization of value chains can help companies to handle rising complexity in their processes and thereby reduce the steadily increasing planning and control effort in order to raise performance limits. Due to technological advances, companies face the challenge of smart value chains for the purpose of improvements in productivity, handling the increasing time and cost pressure and the need of individualized production. Therefore, companies need to ensure quick and flexible decisions to create self-optimizing processes and, consequently, to make their production more efficient. Lean production, as the most commonly used paradigm for complexity reduction, reaches its limits when it comes to variant flexible production and constantly changing market and environmental conditions. To lift performance limits, which are inbuilt in current value chains, new methods and tools must be applied. Digitalization provides the potential to derive these new methods and tools. However, companies lack the experience to harmonize different digital technologies. There is no practicable framework, which instructs the transformation of current value chains into digital pervasive value chains. Current research shows that a connection between lean production and digitalization exists. This link is based on factors such as people, technology and organization. In this paper, the introduced method for the determination of digitally pervasive value chains takes the factors people, technology and organization into account and extends existing approaches by a new dimension. It is the first systematic approach for the digital transformation of lean production and consists of four steps: The first step of ‘target definition’ describes the target situation and defines the depth of the analysis with regards to the inspection area and the level of detail. The second step of ‘analysis of the value chain’ verifies the lean-ability of processes and lies in a special focus on the integration capacity of digital technologies in order to raise the limits of lean production. Furthermore, the ‘digital evaluation process’ ensures the usefulness of digital adaptions regarding their practicability and their integrability into the existing production system. Finally, the method defines actions to be performed based on the evaluation process and in accordance with the target situation. As a result, the validation and optimization of the proposed method in a German company from the electronics industry shows that the digital transformation of current value chains based on lean production achieves a raise of their inbuilt performance limits.

The Enhancement of Training of Military Pilots Using Psychophysiological Methods

Optimal human performance is a key goal in the professional setting of military pilots, which is a highly challenging atmosphere. The aviation environment requires substantial cognitive effort and is rich in potential stressors. Therefore, it is important to analyze variables such as mental workload to ensure safe conditions. Pilot mental workload could be measured using several tools, but most of them are very subjective. This paper details research conducted with military pilots using psychophysiological methods such as electroencephalography (EEG) and heart rate (HR) monitoring. The data were measured in a simulator as well as under real flight conditions. All of the pilots were exposed to highly demanding flight tasks and showed big individual response differences. On that basis, the individual pattern for each pilot was created counting different EEG features and heart rate variations. Later on, it was possible to distinguish the most difficult flight tasks for each pilot that should be more extensively trained. For training purposes, an application was developed for the instructors to decide which of the specific tasks to focus on during follow-up training. This complex system can help instructors detect the mentally demanding parts of the flight and enhance the training of military pilots to achieve optimal performance.

Improving Sales through Inventory Reduction: A Retail Chain Case Study

Today's challenging business environment, with unpredictable demand and volatility, requires a supply chain strategy that handles uncertainty and risks in the right way. Even though inventory models have been previously explored, this paper seeks to apply these concepts on a practical situation. This study involves the inventory replenishment problem, applying techniques that are mainly based on mathematical assumptions and modeling. The primary goal is to improve the retailer’s supply chain processes taking store differences when setting the various target stock levels. Through inventory review policy, picking piece implementation and minimum exposure definition, we were able not only to promote the inventory reduction as well as improve sales results. The inventory management theory from literature review was then tested on a single case study regarding a particular department in one of the largest Latam retail chains.

The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

An Immersive Serious Game for Firefighting and Evacuation Training in Healthcare Facilities

In healthcare facilities, training the staff for firefighting and evacuation in real buildings is very challenging due to the presence of a vulnerable population in such an environment. In a standard environment, traditional approaches, such as fire drills, are often used to train the occupants and provide them with information about fire safety procedures. However, those traditional approaches may be inappropriate for a vulnerable population and can be inefficient from an educational viewpoint as it is impossible to expose the occupants to scenarios similar to a real emergency. Immersive serious games could be used as an alternative to traditional approaches to overcome their limitations. Serious games are already being used in different safety domains such as fires, earthquakes and terror attacks for several building types (e.g., office buildings, train stations, tunnels, etc.). In this study, we developed an immersive serious game to improve the fire safety skills of staff in healthcare facilities. An accurate representation of the healthcare environment was built in Unity3D by including visual and audio stimuli inspired from those employed in commercial action games. The serious game is organised in three levels. In each of them, the trainee is presented with a specific fire emergency and s/he can perform protective actions (e.g., firefighting, helping non-ambulant occupants, etc.) or s/he can ignore the opportunity for action and continue the evacuation. In this paper, we describe all the steps required to develop such a prototype, as well as the key questions that need to be answered, to develop a serious game for firefighting and evacuation in healthcare facilities.

Procedure for Impact Testing of Fused Recycled Glass

Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.

Design Transformation to Reduce Cost in Irrigation Using Value Engineering

Researchers are responding to the environmental challenges of Kuwait in localized, innovative, effective and economic ways. One of the vital and significant examples of the natural challenges is lack or water and desertification. In this research, the project team focuses on redesigning a prototype, using Value Engineering Methodology, which would provide similar functionalities to the well-known technology of Waterboxx kits while reducing the capital and operational costs and simplifying the process of manufacturing and usability by regular farmers. The design employs used tires and recycled plastic sheets as raw materials. Hence, this approach is going to help not just fighting desertification but also helping in getting rid of ever growing huge tire dumpsters in Kuwait, as well as helping in avoiding hazards of tire fires yielding in a safer and friendlier environment. Several alternatives for implementing the prototype have been considered. The best alternative in terms of value has been selected after thorough Function Analysis System Technique (FAST) exercise has been developed. A prototype has been fabricated and tested in a controlled simulated lab environment that is being followed by real environment field testing. Water and soil analysis conducted on the site of the experiment to cross compare between the composition of the soil before and after the experiment to insure that the prototype being tested is actually going to be environment safe. Experimentation shows that the design was equally as effective as, and may exceed, the original design with significant savings in cost. An estimated total cost reduction using the VE approach of 43.84% over the original design. This cost reduction does not consider the intangible costs of environmental issue of waste recycling which many further intensify the total savings of using the alternative VE design. This case study shows that Value Engineering Methodology can be an important tool in innovating new designs for reducing costs.

Interference Management in Long Term Evolution-Advanced System

Incorporating Home eNodeB (HeNB) in cellular networks, e.g. Long Term Evolution Advanced (LTE-A), is beneficial for extending coverage and enhancing capacity at low price especially within the non-line-of sight (NLOS) environments such as homes. HeNB or femtocell is a small low powered base station which provides radio coverage to the mobile users in an indoor environment. This deployment results in a heterogeneous network where the available spectrum becomes shared between two layers. Therefore, a problem of Inter Cell Interference (ICI) appears. This issue is the main challenge in LTE-A. To deal with this challenge, various techniques based on frequency, time and power control are proposed. This paper deals with the impact of carrier aggregation and higher order MIMO (Multiple Input Multiple Output) schemes on the LTE-Advanced performance. Simulation results show the advantages of these schemes on the system capacity (4.109 b/s/Hz when bandwidth B=100 MHz and when applying MIMO 8x8 for SINR=30 dB), maximum theoretical peak data rate (more than 4 Gbps for B=100 MHz and when MIMO 8x8 is used) and spectral efficiency (15 b/s/Hz and 30b/s/Hz when MIMO 4x4 and MIMO 8x8 are applying respectively for SINR=30 dB).

SENSE-SEAT: Improving Creativity and Productivity through the Redesign of a Multisensory Technological Office Chair

The current trend of organizations offering their workers open-office spaces and co-working offices has been primed for stimulating teamwork and collaboration. However, this is not always valid as these kinds of spaces bring other types of challenges that compromise workers productivity and creativity. We present an approach for improving creativity and productivity at the workspace by redesigning an office chair that incorporates subtle technological elements that help users focus, relax and being more productive and creative. This sheds light on how we can better design interactive furniture for such popular contexts, as we develop this new chair through a multidisciplinary approach using ergonomics, interior design, interaction design, hardware and software engineering and psychology.

Robot Technology Impact on Dyslexic Students’ English Learning

Involving students in English language learning process and achieving an adequate English language proficiency in the target language can be a great challenge for both teachers and students. This can prove even a far greater challenge to engage students with special needs (Dyslexia) if they have physical impairment and inadequate mastery of basic communicative language competence/proficiency in the target language. From this perspective, technology like robots can probably be used to enhance learning process for the special needs students who have extensive communication needs, who face continuous struggle to interact with their peers and teachers and meet academic requirements. Robots, precisely NAO, can probably provide them with the perfect opportunity to practice social and communication skills, and meet their English academic requirements. This research paper aims to identify to what extent robots can be used to improve students’ social interaction and communication skills and to understand the potential for robotics-based education in motivating and engaging UAEU dyslexic students to meet university requirements. To reach this end, the paper will explore several factors that come into play – Motion Level-involving cognitive activities, Interaction Level-involving language processing, Behavior Level -establishing a close relationship with the robot and Appraisal Level- focusing on dyslexia students’ achievement in the target language.

Droning the Pedagogy: Future Prospect of Teaching and Learning

Drones, the Unmanned Aerial Vehicles are playing an important role in real-world problem-solving. With the new advancements in technology, drones are becoming available, affordable and user- friendly. Use of drones in education is opening new trends in teaching and learning practices in an innovative and engaging way. Drones vary in types and sizes and possess various characteristics and capabilities which enhance their potential to be used in education from basic to advanced and challenging learning activities which are suitable for primary, middle and high school level. This research aims to provide an insight to explore different types of drones and their compatibility to be used in teaching different subjects at various levels. Research focuses on integrating the drone technology along with Australian curriculum content knowledge to reinforce the understanding of the fundamental concepts and helps to develop the critical thinking and reasoning in the learning process.

Modeling of Supply Chains Delocalization Problems Taking into Account the New Financial Policies: Case of Multinational Firms Established in OECD Member Countries

For many enterprises, the delocalization of a part or the totality of their supply chain to low cost countries is the best way to reduce costs and remain competitive against the growing globalized market. This new tendency is driven by logistics advantages, as well as, financial and tax discount offered by the host countries. The objective of this article is to examine the new financial challenges introduced by the project of base erosion and profits shifting (BEPS), published in 2015, and also their impact on the decision of delocalization. In fact, the strategy adopted by multinational firms for determining the transfer price (TP) of goods and services, as well as the shared amount of revenues and expenses have a major impact upon group profit and may contribute to divergent results. In order to get more profit, a coherent decision of delocalization should be based on an evaluation of all the operational and financial characteristics associated with such movement. Therefore, it is interesting to model these new constraints and integrate them in a more global decision model. The established model will enable to measure how much these financial constraints impact the decision of delocalization and will give new helpful directives for enterprise managers.

Nonlinear Estimation Model for Rail Track Deterioration

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Sixth-Order Two-Point Efficient Family of Super-Halley Type Methods

The main focus of this manuscript is to provide a highly efficient two-point sixth-order family of super-Halley type methods that do not require any second-order derivative evaluation for obtaining simple roots of nonlinear equations, numerically. Each member of the proposed family requires two evaluations of the given function and two evaluations of the first-order derivative per iteration. By using Mathematica-9 with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm t he t heoretical d evelopment. From their basins of attraction, it has been observed that the proposed methods have better stability and robustness as compared to the other sixth-order methods available in the literature.

Software Obsolescence Drivers in Aerospace: An Industry Analysis

Software applications have become crucial for the aerospace industry, providing a wide range of functionalities and capabilities. However, due to the considerable time difference between aircraft and software life cycles, obsolescence has turned into a major challenge for industry in last decades. This paper aims to provide a view on the different causes of software obsolescence within aerospace industry, as well as a perception on the importance of each of them. The key research question addressed is what drives software obsolescence in the aerospace industry, managing large software application portfolios. This question has been addressed by conducting firstly an in depth review of current literature and secondly by arranging an industry workshop with professionals from aerospace and consulting companies. The result is a set of drivers of software obsolescence, distributed among three different environments and several domains. By incorporating monitoring methodologies to assess those software obsolescence drivers, benefits in maintenance efforts and operations disruption avoidance are expected.

Development of Highly Sensitive System for Measurement and Monitoring of Small Impacts

Developing electronic system for detecting low energy impacts using open source hardware such as Arduino is challenging. A highly efficient loadcell is designed and fabricated. A commercial polyvinylidene fluoride (PVDF) piezoelectric film is used as primary sensor for sensing small impacts. Without modifying hardware, the Arduino board is configured by programming to capture the signal from the film sensor with a resolution better than 1.1 mV. By our system, impact energy as low as 1.8 µJ (corresponds to impact force of 39.9 mN) is reliably and monitored. In the linear zone, sensitivity of the system found to be as high as 20.7 kV/J or 3.3 V/N with a measurement frequency of 500 Hz. The various characteristics such as linearity, hysteresis, repeatability and spectrum analysis are discussed. After calibration, measurements of unknown impact energy and impact force are investigated and results are found to agree well.