Abstract: On February 15, 2012 off the Indian coast of Kerala, in position 091702N-0760180E by the oil tanker Enrica Lexie, flying the Italian flag, bursts of 5.56 x45 caliber shots were fired from assault rifles AR/70 Italian-made Beretta towards the Indian fisher boat St. Anthony. The shots that hit the St. Anthony fishing boat were six, of which two killed the Indian fishermen Ajesh Pink and Valentine Jelestine. From the analysis concerning the kinematic engagement of the two ships and from the autopsy and ballistic results of the Indian judicial authorities it is possible to reconstruct the trajectories of the six aforementioned shots. This essay reconstructs the trajectories of the six shots that cannot be of direct shooting but have undergone a rebound on the water. The investigation carried out scientifically demonstrates the rebound of the blows on the water, the gyrostatic deviation due to the rebound and the tumbling effect always due to the rebound as regards intermediate ballistics. In consideration of the four shots that directly impacted the fishing vessel, the current examination proves, with scientific value, that the trajectories could not be downwards but upwards. Also, the trajectory of two shots that hit to death the two fishermen could not be downwards but only upwards. In fact, this paper demonstrates, with scientific value: The loss of speed of the projectiles due to the rebound on the water; The tumbling effect in the ballistic medium within the two victims; The permanent cavities subject to the injury ballistics and the related ballistic trauma that prevented homeostasis causing bleeding in one case; The thermo-hardening deformation of the bullet found in Valentine Jelestine's skull; The upward and non-downward trajectories. The paper constitutes a tool in forensic ballistics in that it manages to reconstruct, from the final spot of the projectiles fired, all phases of ballistics like the internal one of the weapons that fired, the intermediate one, the terminal one and the penetrative structural one. In general terms the ballistics reconstruction is based on measurable parameters whose entity is contained with certainty within a lower and upper limit. Therefore, quantities that refer to angles, speed, impact energy and firing position of the shooter can be identified within the aforementioned limits. Finally, the investigation into the internal bullet track, obtained from any autopsy examination, offers a significant “lesson learned” but overall a starting point to contain or mitigate bleeding as a rescue from future gunshot wounds.
Abstract: The influence of Mg and Zr addition on mechanical properties such as hardness, tensile strength and impact energy of commercially pure Al are investigated. The microstructure and fracture behavior are also studied by using Optical and Scanning Electron Microscopy. It is observed that magnesium addition improves the mechanical properties of commercially pure Al at the expense of ductility due to formation of β″ (Al3Mg) and β′ (Al3Mg2) phase into the alloy. Zr addition also plays a positive role through grain refinement effect and the formation of metastable L12 Al3Zr precipitates. In addition, it is observed that the fractured surface of Mg added alloy is brittle and higher numbers of dimples are observed in case of Zr added alloy.
Abstract: Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.
Abstract: Developing electronic system for detecting low energy impacts using open source hardware such as Arduino is challenging. A highly efficient loadcell is designed and fabricated. A commercial polyvinylidene fluoride (PVDF) piezoelectric film is used as primary sensor for sensing small impacts. Without modifying hardware, the Arduino board is configured by programming to capture the signal from the film sensor with a resolution better than 1.1 mV. By our system, impact energy as low as 1.8 µJ (corresponds to impact force of 39.9 mN) is reliably and monitored. In the linear zone, sensitivity of the system found to be as high as 20.7 kV/J or 3.3 V/N with a measurement frequency of 500 Hz. The various characteristics such as linearity, hysteresis, repeatability and spectrum analysis are discussed. After calibration, measurements of unknown impact energy and impact force are investigated and results are found to agree well.
Abstract: This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.
Abstract: Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.
Abstract: For briquetting of metal chips are used hydraulic and
mechanical presses. The density of the briquettes in this case is about
60% - 70 % on the density of solid metal. In this work are presented
the results of experimental studies for briquetting of metal chips, by
using a new technology for impact briquetting. The used chips are by
Armco iron, steel, cast iron, copper, aluminum and brass. It has been
found that: (i) in a controlled impact the density of the briquettes can
be increases up to 30%; (ii) at the same specific impact energy Es
(J/sm3) the density of the briquettes increases with increasing of the
impact velocity; (iii), realization of the repeated impact leads to
decrease of chips density, which can be explained by distribution of
elastic waves in the briquette.
Abstract: Inspired by the Formula-1 competition, IMechE
(Institute of Mechanical Engineers) and Formula SAE (Society of
Mechanical Engineers) organize annual competitions for University
and College students worldwide to compete with a single-seat racecar
they have designed and built. Design of the chassis or the frame is a
key component of the competition because the weight and stiffness
properties are directly related with the performance of the car and the
safety of the driver. In addition, a reduced weight of the chassis has
direct influence on the design of other components in the car. Among
others, it improves the power to weight ratio and the aerodynamic
performance. As the power output of the engine or the battery
installed in the car is limited to 80 kW, increasing the power to
weight ratio demands reduction of the weight of the chassis, which
represents the major part of the weight of the car. In order to reduce
the weight of the car, ION Racing team from University of
Stavanger, Norway, opted for a monocoque design. To ensure
fulfilment of the competition requirements of the chassis, the
monocoque design should provide sufficient torsional stiffness and
absorb the impact energy in case of possible collision. The study reported in this article is based on the requirements for
Formula Student competition. As part of this study, diverse
mechanical tests were conducted to determine the mechanical
properties and performances of the monocoque design. Upon a
comprehensive theoretical study of the mechanical properties of
sandwich composite materials and the requirements of monocoque
design in the competition rules, diverse tests were conducted
including 3-point bending test, perimeter shear test and test for
absorbed energy. The test panels were homemade and prepared with
equivalent size of the side impact zone of the monocoque, i.e. 275
mm x 500 mm, so that the obtained results from the tests can be
representative. Different layups of the test panels with identical core
material and the same number of layers of carbon fibre were tested
and compared. Influence of the core material thickness was also
studied. Furthermore, analytical calculations and numerical analysis
were conducted to check compliance to the stated rules for Structural
Equivalency with steel grade SAE/AISI 1010. The test results were
also compared with calculated results with respect to bending and
torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition
and strength of the composite material selected for the monocoque
design has equivalent structural properties as a welded frame and thus
comply with the competition requirements. The developed analytical
calculation algorithms and relations will be useful for future
monocoque designs with different lay-ups and compositions.
Abstract: Copper being one of the major intrinsic residual
impurities in steel possesses the tendency to induce severe
microstructural distortions if not controlled within certain limits.
Hence, this paper investigates the effect of this element on the
mechanical properties of construction steel with a view to ascertain
its safe limits for effective control. The experiment entails collection
of statistically scheduled samples of hot rolled profiles with varied
copper concentrations in the range of 0.12-0.39 wt. %. From these
samples were prepared standard test specimens subjected to tensile,
impact, hardness and microstructural analyses. Results show a rather
huge compromise in mechanical properties as the specimens
demonstrated 54.3%, 74.2% and 64.9% reduction in tensile strength,
impact energy and hardness respectively as copper content increases
from 0.12 wt. % to 0.39 wt. %. The steel’s abysmal performance is
due to the severe distortion of the microstructure occasioned by the
development of incoherent complex compounds which weaken the
pearlite reinforcing phase. It is concluded that the presence of copper
above 0.22 wt. % is deleterious to construction steel performance.
Abstract: To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures.
Abstract: SiC reinforced Aluminum samples were produced by stir casting of liquid AA1200 aluminum alloy at 600-650ºC casting temperature. 83µm SiC particles were rinsed in 10g/l, 20g/l and 30g/l molar concentration of Sncl2 through cleaning times of 0, 60, 120, and 180 minutes. Some cast samples were tested for mechanical properties and some were subjected to heat treatment before testing. The SnCl2 rinsed SiC reinforced aluminum exhibited higher yield strength, hardness, stiffness and elongation which increases with cleaning concentration and time up to 120 minutes, compared to composite with untreated SiC. However, the impact energy resistance decreases with cleaning concentration and time. The improved properties were attributed to good wettability and mechanical adhesion at the fiber-matrix interface. Quenching and annealing the composite samples further improve the tensile/yield strengths, elongation, stiffness, hardness similar to those of the as-cast samples.
Abstract: Sand cast samples of the as-received 66/34Mg-Al alloy were first homogenized at 4900C and then divided into three groups on which annealing, normalising and artificial ageing were respectively carried out. Thermal ageing of the samples involved treatment at 5000C, soaked for 4 hours and quenched in water at ambient temperature followed by tempering at 2000C for 2 hours. Test specimens were subjected to microstructure and mechanical analyses and the results compared. Precipitation of significant volume of stable Mg17Al12 crystals in the aged specimen’s matrix conferred superior mechanical characteristics compared with the annealed, normalized and as-cast specimens. The ultimate tensile strength was 93.4MPa with micro-hardness of 64.9HRC and impact energy (toughness) of 4.05J. In particular, its Young modulus was 10.4GPa which compared well with that of cortical (trabecule) bone’s modulus that varies from 12-17GPa.
Abstract: This investigation presents preparation of sample and
analysis of results of ballistic impact test as per EN 1063 on the size,
thickness, number, position, and type of the bonding interlayer
Polyvinyl Butyral, Poly Carbonate and Poly Urethane on bullet proof
glass. It was observed that impact energy absorbed by bullet proof
glass increases with the increase of the total thickness from 33mm to
42mm to 51mm for all the three samples respectively. Absorption
impact energy is greater for samples with more number of bonding
interlayers than with the number of glass layers for uniform increase
in total sample thickness. There is no effect on the absorption impact
energy with the change in position of the bonding interlayer.
Abstract: Cryogenic treatment is the process of cooling a material to extremely low temperatures to generate enhanced mechanical and physical properties. The purpose of this study is to examine the effect of cryogenic treatment on the impact behavior of En 52 and 21-4N valve steels. The valve steels are subjected to shallow (193 K) and deep cryogenic treatment (85 K), and the impact behavior is compared with the valve steel materials subjected to conventional heat treatment. The impact test is carried out in accordance with the ASTM E 23-02a standard. The results show an improvement of 23 % in the impact energy for the En 52 deep cryo-treated samples when compared to that of the conventionally heat treated samples. It is revealed that during cryogenic treatment fine platelets of martensite are formed from the retained austenite, and these platelets promote the precipitation of fine carbides by a diffusion mechanism during tempering.
Abstract: Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultrafine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools.
For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens.
Abstract: We investigated the effects of the additions of Zr and other alloying elements on the mechanical properties and microstructure in Cr-Mo plastic mold steels. The addition of alloying elements changed the microstructure of the normalized samples from the upper bainite to lower bainite due to the increased hardenability. The tempering temperature influenced the strength and hardness values, especially the phenomenon of 350oC embrittlement was observed. The alloy additions of Cr, Mo, and V improved the resistance to the temper embrittlement. The addition of Zr improved the tensile strength and yield strength, but the impact energy was sharply decreased. It may be caused by the formation of Zr-MnS inclusion and rectangular-shaped Zr inclusion due to the Zr addition.
Abstract: Bumpers play an important role in preventing the
impact energy from being transferred to the automobile and
passengers. Saving the impact energy in the bumper to be released in
the environment reduces the damages of the automobile and
passengers.
The goal of this paper is to design a bumper with minimum weight
by employing the Glass Material Thermoplastic (GMT) materials.
This bumper either absorbs the impact energy with its deformation or
transfers it perpendicular to the impact direction.
To reach this aim, a mechanism is designed to convert about 80%
of the kinetic impact energy to the spring potential energy and
release it to the environment in the low impact velocity according to
American standard1. In addition, since the residual kinetic energy
will be damped with the infinitesimal elastic deformation of the
bumper elements, the passengers will not sense any impact. It should
be noted that in this paper, modeling, solving and result-s analysis
are done in CATIA, LS-DYNA and ANSYS V8.0 software
respectively.
Abstract: During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of Standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67HV from 21HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.