Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.

Recycling of Sintered NdFeB Magnet Waste via Oxidative Roasting and Selective Leaching

Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as automotive, electrical and medical devices. Because significant amounts of rare earth metals will be subjected to shortages in the future, therefore domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social and environmental impacts towards a circular economy. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd2O3) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550–800 oC to enable selective leaching of neodymium in the subsequent leaching step using H2SO4 at 2.5 M over 24 h. The leachate was then subjected to drying and roasting at 700–800 oC prior to precipitation by oxalic acid and calcination to obtain Nd2O3 as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to an increasing amount of hematite (Fe2O3) as the main composition with a smaller amount of magnetite (Fe3O4) found. Peaks of Nd2O3 were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO3) was present and its XRD peaks were pronounced at higher oxidative roasting temperatures. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form Fe2O3 as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of Fe3O4 was still detected by XRD. The higher roasting temperature at 800 oC resulted in a greater Fe2O3 to Nd2(SO4)3 ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 oC followed by acid leaching and roasting at 800 oC gave the optimum condition for further steps of precipitation and calcination to finally achieve Nd2O3.

Recycling Behavior in a Multicultural Urban Area in Sweden

Alabastern, a multicultural rental housing area in the Växjö city of Sweden, was identified as poor at recycling household waste compared to other housing areas in the town. In this paper, a qualitative and quantitative analysis is conducted to understand the underlying causes of waste recycling behavior of the tenants. Results showed that majority of the studied participants perceived themselves to be environmentally friendly. They reported that they recycled household waste quite often, but it was the other tenants who did not sort their waste properly. The respondents identified the causes of the improper waste recycling as lack of attitude and awareness, limitation of communication, sense of insecurity, lack of means to transport bulky waste, limitation of the recycling room, and inadequate action by the housing company Växjöbostäder.

Analysis of Differences between Public and Experts’ Views Regarding Sustainable Development of Developing Cities: A Case Study in the Iraqi Capital Baghdad

This paper describes the differences in views on sustainable development between the general public and experts in a developing country, Iraq. This paper will answer the question: How do the views of the public differ from the generally accepted view of experts in the context of sustainable urban development in Iraq? In order to answer this question, the views of both the public and the experts will be analysed. These results are taken from a public survey and a Delphi questionnaire. These will be analysed using statistical methods in order to identify the significant differences. This will enable investigation of the different perceptions between the public perceptions and the experts’ views towards urban sustainable development factors. This is important due to the fact that different viewpoints between policy-makers and the public will impact on the acceptance by the public of any future sustainable development work that is undertaken. The brief findings of the statistical analysis show that the views of both the public and the experts are considered different in most of the variables except six variables show no differences. Those variables are ‘The importance of establishing sustainable cities in Iraq’, ‘Mitigate traffic congestion’, ‘Waste recycling and separating’, ‘Use wastewater recycling’, ‘Parks and green spaces’, and ‘Promote investment’.

Production and Recycling of Construction and Demolition Waste

Recycling of construction and demolition waste (C&DW) and their new reuse in structures is one of the solutions of environmental problems. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills all the time. The paper deals with the situation of the recycling of the building and demolition waste in the Czech Republic during the recent years. The paper is dealing with questions of C&D waste recycling, it also characterizes construction and demolition waste in general, furthermore it analyses production of construction waste and subsequent production of recycled materials.

The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods

The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.

Land Art in Public Spaces Design: Remediation, Prevention of Environmental Risks and Recycling as a Consequence of the Avant-Garde Activity of Landscape Architecture

Over the last 40 years, there has been a trend in landscape architecture which supporters do not perceive the role of pro-ecological or postmodern solutions in the design of public green spaces as an essential goal, shifting their attention to the 'sculptural' shaping of areas with the use of slopes, hills, embankments, and other forms of terrain. This group of designers can be considered avant-garde, which in its activities refers to land art. Initial research shows that such applications are particularly frequent in places of former post-industrial sites and landfills, utilizing materials such as debris and post-mining waste in their construction. Due to the high degradation of the environment surrounding modern man, the brownfields are a challenge and a field of interest for the representatives of landscape architecture avant-garde, who through their projects try to recover lost lands by means of transformations supported by engineering and ecological knowledge to create places where nature can develop again. The analysis of a dozen or so facilities made it possible to come up with an important conclusion: apart from the cultural aspects (including artistic activities), the green areas formally referring to the land are important in the process of remediation of post-industrial sites and waste recycling (e. g. from construction sites). In these processes, there is also a potential for applying the concept of Natural Based Solutions, i.e. solutions allowing for the natural development of the site in such a way as to use it to cope with environmental problems, such as e.g.  air pollution, soil phytoremediation and climate change. The paper presents examples of modern parks, whose compositions are based on shaping the surface of the terrain in a way referring to the land art, at the same time providing an example of brownfields reuse and application of waste recycling.  For the purposes of object analysis, research methods such as historical-interpretation studies, case studies, qualitative research or the method of logical argumentation were used. The obtained results provide information about the role that landscape architecture can have in the process of remediation of degraded areas, at the same time guaranteeing the benefits, such as the shaping of landscapes attractive in terms of visual appearance, low costs of implementation, and improvement of the natural environment quality.

Design Transformation to Reduce Cost in Irrigation Using Value Engineering

Researchers are responding to the environmental challenges of Kuwait in localized, innovative, effective and economic ways. One of the vital and significant examples of the natural challenges is lack or water and desertification. In this research, the project team focuses on redesigning a prototype, using Value Engineering Methodology, which would provide similar functionalities to the well-known technology of Waterboxx kits while reducing the capital and operational costs and simplifying the process of manufacturing and usability by regular farmers. The design employs used tires and recycled plastic sheets as raw materials. Hence, this approach is going to help not just fighting desertification but also helping in getting rid of ever growing huge tire dumpsters in Kuwait, as well as helping in avoiding hazards of tire fires yielding in a safer and friendlier environment. Several alternatives for implementing the prototype have been considered. The best alternative in terms of value has been selected after thorough Function Analysis System Technique (FAST) exercise has been developed. A prototype has been fabricated and tested in a controlled simulated lab environment that is being followed by real environment field testing. Water and soil analysis conducted on the site of the experiment to cross compare between the composition of the soil before and after the experiment to insure that the prototype being tested is actually going to be environment safe. Experimentation shows that the design was equally as effective as, and may exceed, the original design with significant savings in cost. An estimated total cost reduction using the VE approach of 43.84% over the original design. This cost reduction does not consider the intangible costs of environmental issue of waste recycling which many further intensify the total savings of using the alternative VE design. This case study shows that Value Engineering Methodology can be an important tool in innovating new designs for reducing costs.

Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes

The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.

The Composting Process from a Waste Management Method to a Remediation Procedure

Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils.

Characteristics of E-waste Recycling Systems in Japan and China

This study aims to identify processes, current situations, and issues of recycling systems for four home appliances, namely, air conditioners, television receivers, refrigerators, and washing machines, among e-wastes in China and Japan for understanding and comparison of their characteristics. In accordance with results of a literature search, review of information disclosed online, and questionnaire survey conducted, conclusions of the study boil down to: (1)The results show that in Japan most of the home appliances mentioned above have been collected through home appliance recycling tickets, resulting in an issue of “requiring some effort" in treatment and recycling stages, and most plants have contracted out their e-waste recycling. (2)It is found out that advantages of the recycling system in Japan include easiness to monitor concrete data and thorough environmental friendliness ensured while its disadvantages include illegal dumping and export. It becomes apparent that advantages of the recycling system in China include a high reuse rate, low treatment cost, and fewer illegal dumping while its disadvantages include less safe reused products, environmental pollution caused by e-waste treatment, illegal import, and difficulty in obtaining data.

Green Computing: From Current to Future Trends

During recent years, attention in 'Green Computing' has moved research into energy-saving techniques for home computers to enterprise systems' Client and Server machines. Saving energy or reduction of carbon footprints is one of the aspects of Green Computing. The research in the direction of Green Computing is more than just saving energy and reducing carbon foot prints. This study provides a brief account of Green Computing. The emphasis of this study is on current trends in Green Computing; challenges in the field of Green Computing and the future trends of Green Computing.

Kinetics of Polyethylene Terephthalate (PET)and Polystyrene (PS) Dynamic Pyrolysis

Thermo-chemical treatment (TCT) such as pyrolysis is getting recognized as a valid route for (i) materials and valuable products and petrochemicals recovery; (ii) waste recycling; and (iii) elemental characterization. Pyrolysis is also receiving renewed attention for its operational, economical and environmental advantages. In this study, samples of polyethylene terephthalate (PET) and polystyrene (PS) were pyrolysed in a microthermobalance reactor (using a thermogravimetric-TGA setup). Both polymers were prepared and conditioned prior to experimentation. The main objective was to determine the kinetic parameters of the depolymerization reactions that occur within the thermal degradation process. Overall kinetic rate constants (ko) and activation energies (Eo) were determined using the general kinetics theory (GKT) method previously used by a number of authors. Fitted correlations were found and validated using the GKT, errors were within ± 5%. This study represents a fundamental step to pave the way towards the development of scaling relationship for the investigation of larger scale reactors relevant to industry.