Fuzzy Logic PID Control of Automatic Voltage Regulator System

The application of a simple microcontroller to deal with a three variable input and a single output fuzzy logic controller, with Proportional – Integral – Derivative (PID) response control built-in has been tested for an automatic voltage regulator. The fuzzifiers are based on fixed range of the variables of output voltage. The control output is used to control the wiper motor of the auto transformer to adjust the voltage, using fuzzy logic principles, so that the voltage is stabilized. In this report, the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.

Experimental Study of the Metal Foam Flow Conditioner for Orifice Plate Flowmeters

The sensitivity of orifice plate metering to disturbed flow (either asymmetric or swirling) is a subject of great concern to flow meter users and manufacturers. The distortions caused by pipe fittings and pipe installations upstream of the orifice plate are major sources of this type of non-standard flows. These distortions can alter the accuracy of metering to an unacceptable degree. In this work, a multi-scale object known as metal foam has been used to generate a predetermined turbulent flow upstream of the orifice plate. The experimental results showed that the combination of an orifice plate and metal foam flow conditioner is broadly insensitive to upstream disturbances. This metal foam demonstrated a good performance in terms of removing swirl and producing a repeatable flow profile within a short distance downstream of the device. The results of using a combination of a metal foam flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show this package can preserve the accuracy of metering up to the level required in the standards.

Image Enhancement using α-Trimmed Mean ε-Filters

Image enhancement is the most important challenging preprocessing for almost all applications of Image Processing. By now, various methods such as Median filter, α-trimmed mean filter, etc. have been suggested. It was proved that the α-trimmed mean filter is the modification of median and mean filters. On the other hand, ε-filters have shown excellent performance in suppressing noise. In spite of their simplicity, they achieve good results. However, conventional ε-filter is based on moving average. In this paper, we suggested a new ε-filter which utilizes α-trimmed mean. We argue that this new method gives better outcomes compared to previous ones and the experimental results confirmed this claim.

Envelope Echo Signal of Metal Sphere in the Fresh Water

An envelope echo signal measurement is proposed in this paper using echo signal observation from the 200 kHz echo sounder receiver. The envelope signal without any object is compared with the envelope signal of the sphere. Two diameter size steel ball (3.1 cm & 2.2 cm) and two diameter size air filled stainless steel ball (4.8 cm & 7.4 cm) used in this experiment. The target was positioned about 0.5 m and 1.0 meter from the transducer face using nylon rope. From the echo observation in time domain, it is obviously shown that echo signal structure is different between the size, distance and type of metal sphere. The amplitude envelope voltage for the bigger sphere is higher compare to the small sphere and it confirm that the bigger sphere have higher target strength compare to the small sphere. Although the structure signal without any object are different compare to the signal from the sphere, the reflected signal from the tank floor increase linearly with the sphere size. We considered this event happened because of the object position approximately to the tank floor.

Problems and Possible Solutions with the Development of a Computer Model of Quantum Theory

A computer model of Quantum Theory (QT) has been developed by the author. Major goal of the computer model was support and demonstration of an as large as possible scope of QT. This includes simulations for the major QT (Gedanken-) experiments such as, for example, the famous double-slit experiment. Besides the anticipated difficulties with (1) transforming exacting mathematics into a computer program, two further types of problems showed up, namely (2) areas where QT provides a complete mathematical formalism, but when it comes to concrete applications the equations are not solvable at all, or only with extremely high effort; (3) QT rules which are formulated in natural language and which do not seem to be translatable to precise mathematical expressions, nor to a computer program. The paper lists problems in all three categories and describes also the possible solutions or circumventions developed for the computer model.

Experimental and Theoretical Investigation on Notched Specimens Life Under Bending Loading

In this work, bending fatigue life of notched specimens with various notch geometries and dimensions is investigated by experiment and Manson-Caffin theoretical method. In this theoretical method, fatigue life of notched specimens is calculated using the fatigue life obtained from the experiments for plain specimens (without notch). Three notch geometries including ∪-shape, ∨-shape and C -shape notches are considered in this investigation. The experiments are conducted on a rotary bending Moore machine. The specimens are made of a low carbon steel alloy, which has wide application in industry. The stress- life curves are captured for all notched specimen by experiment. The results indicate that Manson-Caffin analytical method cannot adequately predict the fatigue life of notched specimen. However, it seems that the difference between the experiments and Manson-Caffin predictions can be compensated by a proportional factor.

Ethics Perception of Pharmaceutical Companies

The paper is intended to declare and apply ethics, i. e. moral principles, rules in marketing environment. Ethical behavior of selected pharmaceutical companies in the Slovak Republic is the object of our research. The aim of our research is to determine perception of ethical behavior of the pharmaceutical industry in Slovakia by the medicine representatives in comparison with the assessment of doctors and patients. The experimental sample included 90 participants who were divided into three groups: medicine representatives of the pharmaceutical companies (N=30), doctors (N=30) and patients (N=30). The research method was a Questionnaire of ethical behavior, created by us, that describes individual areas included in the Code of ethics of the pharmaceutical industry in Slovakia. The results showed influence of professional status on ethical behavior perception, not gender. Higher perception was indicated at patients rather than doctors and medicine representatives.

An Experiment on Personal Archiving and Retrieving Image System (PARIS)

PARIS (Personal Archiving and Retrieving Image System) is an experiment personal photograph library, which includes more than 80,000 of consumer photographs accumulated within a duration of approximately five years, metadata based on our proposed MPEG-7 annotation architecture, Dozen Dimensional Digital Content (DDDC), and a relational database structure. The DDDC architecture is specially designed for facilitating the managing, browsing and retrieving of personal digital photograph collections. In annotating process, we also utilize a proposed Spatial and Temporal Ontology (STO) designed based on the general characteristic of personal photograph collections. This paper explains PRAIS system.

Nonlinear Modeling and Analysis of AAC infilled Sandwich Panels for out of Plane Loads

Sandwich panels are widely used in the construction industry for their ease of assembly, light weight and efficient thermal performance. They are composed of two RC thin outer layers separated by an insulating inner layer. In this research the inner insulating layer is made of lightweight Autoclaved Aerated Concrete (AAC) blocks which has good thermal insulation properties and yet possess reasonable mechanical strength. The shear strength of the AAC infill is relied upon to replace the traditionally used insulating foam and to provide the shear capacity of the panel. A comprehensive experimental program was conducted on full scale sandwich panels subjected to bending. In this paper, detailed numerical modeling of the tested sandwich panels is reported. Nonlinear 3-D finite element modeling of the composite action of the sandwich panel is developed using ANSYS. Solid elements with different crashing and cracking capabilities and different constitutive laws were selected for the concrete and the AAC. Contact interface elements are used in this research to adequately model the shear transfer at the interface between the different layers. The numerical results showed good correlation with the experimental ones indicating the adequacy of the model in estimating the loading capacity of panels.

An Experimental Study on Autoignition of Wood

Experiments were conducted to characterize fire properties of wood exposed to the certain external heat flux and under variety of wood moisture content. Six kinds of Indonesian wood: keruing, sono, cemara, kamper, pinus, and mahoni were exposed to radiant heat from a conical heater, result in appearance of a stable flame on the wood surface caused by spontaneous ignition. A thermocouple K-type was used to measure the wood surface temperature. Temperature histories were recorded throughout each experiment at 1 s intervals using a TC-08. Data of first ignition time and temperature, end ignition time and temperature, and charring rate have been successfully collected. It was found that the ignition temperature and charring rate depend on moisture content of wood.

Object Detection based Weighted-Center Surround Difference

Intelligent traffic surveillance technology is an issue in the field of traffic data analysis. Therefore, we need the technology to detect moving objects in real-time while there are variations in background and natural light. In this paper, we proposed a Weighted-Center Surround Difference method for object detection in outdoor environments. The proposed system detects objects using the saliency map that is obtained by analyzing the weight of each layers of Gaussian pyramid. In order to validate the effectiveness of our system, we implemented the proposed method using a digital signal processor, TMS320DM6437. Experimental results show that blurred noisy around objects was effectively eliminated and the object detection accuracy is improved.

Analytical Model Based Evaluation of Human Machine Interfaces Using Cognitive Modeling

Cognitive models allow predicting some aspects of utility and usability of human machine interfaces (HMI), and simulating the interaction with these interfaces. The action of predicting is based on a task analysis, which investigates what a user is required to do in terms of actions and cognitive processes to achieve a task. Task analysis facilitates the understanding of the system-s functionalities. Cognitive models are part of the analytical approaches, that do not associate the users during the development process of the interface. This article presents a study about the evaluation of a human machine interaction with a contextual assistant-s interface using ACTR and GOMS cognitive models. The present work shows how these techniques may be applied in the evaluation of HMI, design and research by emphasizing firstly the task analysis and secondly the time execution of the task. In order to validate and support our results, an experimental study of user performance is conducted at the DOMUS laboratory, during the interaction with the contextual assistant-s interface. The results of our models show that the GOMS and ACT-R models give good and excellent predictions respectively of users performance at the task level, as well as the object level. Therefore, the simulated results are very close to the results obtained in the experimental study.

Effect of Na2O Content on Durability of Geopolymer Mortars in Sulphuric Acid

This paper presents the findings of an experimental investigation to study the effect of alkali content in geopolymer mortar specimens exposed to sulphuric acid. Geopolymer mortar specimens were manufactured from Class F fly ash by activation with a mixture of sodium hydroxide and sodium silicate solution containing 5% to 8% Na2O. Durability of specimens were assessed by immersing them in 10% sulphuric acid solution and periodically monitoring surface deterioration and depth of dealkalization, changes in weight and residual compressive strength over a period of 24 weeks. Microstructural changes in the specimens were studied with Scanning electron microscopy (SEM) and EDAX. Alkali content in the activator solution significantly affects the durability of fly ash based geopolymer mortars in sulphuric acid. Specimens manufactured with higher alkali content performed better than those manufactured with lower alkali content. After 24 weeks in sulphuric acid, specimen with 8% alkali still recorded a residual strength as high as 55%.

Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model

Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.

Experimental Analysis on Electrical and Photometric Performances of Commercially Available Integrated Compact Fluorescent Lamp

Lighting upgrades involve relatively lower costs which allow the benefits to be spread more widely than is possible with any other energy efficiency measure. In order to popularize the adoption of CFL in Taiwan, the authority proposes to implement a new energy efficient lamp comparative label system. The current study was accordingly undertaken to investigate the factors affecting the performance and the deviation of actual and labeled performance of commercially available integrated CFLs. In this paper, standard test methods to determine the electrical and photometric performances of CFL were developed based on CIE 84-1989 and CIE 60901-1987, then 55 selected CFLs from market were tested. The results show that with higher color temperature of CFLs lower efficacy are achieved. It was noticed that the most packaging of CFL often lack the information of Color Rendering Index. Also, there was no correlation between price and performance of the CFLs was indicated in this work. The results of this paper might help consumers to make more informed CFL-purchasing decisions.

Evaluation of Rheological Properties of Apple Mass Based Desserts

The aim of the study was to evaluate the effect of texturizers on the rheological properties of the apple mass and desserts made from various raw materials. The apple varieties - ‘Antonovka’, ‘Baltais Dzidrais’, and ‘Zarja Alatau’ harvested in Latvia, were used for the experiment. The apples were processed in a blender unpeeled for obtaining a homogenous mass. The apple mass was analyzed fresh and after storage at –18ºC. Both fresh and thawed apple mass samples with added gelatin, xantan gum, and sodium carboxymethylcellulose were whisked obtaining dessert. Pectin, pH and soluble dry matter of the product were determined. Apparent viscosity was measured using a rotational viscometer DV–III Ultra. Pectin content in frozen apple mass decreased significantly (p

Handling Mobility using Virtual Grid in Static Wireless Sensor Networks

Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.

A Modified AES Based Algorithm for Image Encryption

With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. In this paper, we analyze the Advanced Encryption Standard (AES), and we add a key stream generator (A5/1, W7) to AES to ensure improving the encryption performance; mainly for images characterised by reduced entropy. The implementation of both techniques has been realized for experimental purposes. Detailed results in terms of security analysis and implementation are given. Comparative study with traditional encryption algorithms is shown the superiority of the modified algorithm.

The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination

Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.

Development of Mathematical Model for Overall Oxygen Transfer Coefficient of an Aerator and Comparison with CFD Modeling

The value of overall oxygen transfer Coefficient (KLa), which is the best measure of oxygen transfer in water through aeration, is obtained by a simple approach, which sufficiently explains the utility of the method to eliminate the discrepancies due to inaccurate assumption of saturation dissolved oxygen concentration. The rate of oxygen transfer depends on number of factors like intensity of turbulence, which in turns depends on the speed of rotation, size, and number of blades, diameter and immersion depth of the rotor, and size and shape of aeration tank, as well as on physical, chemical, and biological characteristic of water. An attempt is made in this paper to correlate the overall oxygen transfer Coefficient (KLa), as an independent parameter with other influencing parameters mentioned above. It has been estimated that the simulation equation developed predicts the values of KLa and power with an average standard error of estimation of 0.0164 and 7.66 respectively and with R2 values of 0.979 and 0.989 respectively, when compared with experimentally determined values. The comparison of this model is done with the model generated using Computational fluid dynamics (CFD) and both the models were found to be in good agreement with each other.