FPGA based Relative Distance Measurement using Stereo Vision Technology

In this paper, we propose a novel concept of relative distance measurement using Stereo Vision Technology and discuss its implementation on a FPGA based real-time image processor. We capture two images using two CCD cameras and compare them. Disparity is calculated for each pixel using a real time dense disparity calculation algorithm. This algorithm is based on the concept of indexed histogram for matching. Disparity being inversely proportional to distance (Proved Later), we can thus get the relative distances of objects in front of the camera. The output is displayed on a TV screen in the form of a depth image (optionally using pseudo colors). This system works in real time on a full PAL frame rate (720 x 576 active pixels @ 25 fps).

Steel–CFRP Composite (CFRP Laminate Sandwiched between Mild Steel Strips) and It-s Behavior as Stirrup in Beams

In this present study, experimental work was conducted to study the effectiveness of newly innovated steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups. A total numbers of eight concrete beams were tested under four point loads. Each beam measured 1600 mm long, 160mm width and 240 mm depth. The beams were reinforced with different shear reinforcements; one without stirrups, one with steel stirrups and six with different types and numbers of steel-CRFR stirrups. Test results indicated that the steel-CFRP stirrups had enhanced the shear strength capacity of beams. Moreover, the tests revealed that steel- CFRP stirrups reached to their ultimate tensile strength unlike FRP stirrups which rupture at much lower level than their ultimate strength as werereported in various researches.

Performance Comparison between Sliding Mode Control (SMC) and PD-PID Controllers for a Nonlinear Inverted Pendulum System

The objective of this paper is to compare the time specification performance between conventional controller PID and modern controller SMC for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum-s angle and cart-s position. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. Two controllers are presented such as Sliding Mode Control (SMC) and Proportional- Integral-Derivatives (PID) controllers for controlling the highly nonlinear system of inverted pendulum model. Simulation study has been done in Matlab Mfile and simulink environment shows that both controllers are capable to control multi output inverted pendulum system successfully. The result shows that Sliding Mode Control (SMC) produced better response compared to PID control strategies and the responses are presented in time domain with the details analysis.

Knowledge Management Model for Managing Knowledge among Related Organizations

Transferring information developed by other peoples is an ordinary event that happens during daily conversations, for example when employees sea each other in the organization, or when they are having lunch together, or attending a meeting, they use to talk about their experience, and discuss about their current projects, and talk about their successes over some specific problems. Despite the potential value of leveraging organizational memory and expertise by using OMS and ER, still small organizations haven-t been able to capitalize on its promised value. Each organization has its internal knowledge management system, in some of organizations the system face the lack of expert people to save their experience in the repository and in another hand on some other organizations there are lots of expert people but the organization doesn-t have the maximum use of their knowledge.

Bridging the Green-Value-Gap: A South African Approach

Green- spaces might be very attractive, but where are the economic benefits? What value do nature and landscape have for us? What difference will it make to jobs, health and the economic strength of areas struggling with deprivation and social problems? [1].There is a need to consider green spaces from a different perspective. Green planning is not just about flora and fauna, but also about planning for economic benefits [2]. It is worth trying to quantify the value of green spaces since nature and landscape are crucially important to our quality of life and sustainable development. The reality, however, is that urban development often takes place at the expense of green spaces. Urbanization is an ongoing process throughout the world; however, hyper-urbanization without environmental planning is destructive, not constructive [3]. Urban spaces are believed to be more valuable than other land uses, particular green areas, simply because of the market value connected to urban spaces. However, attractive landscapes can help raise the quality and value of the urban market even more. In order to reach these objectives of integrated planning, the Green-Value-Gap needs to be bridged. Economists have to understand the concept of Green-Planning and the spinoffs, and Environmentalists have to understand the importance of urban economic development and the benefits thereof to green planning. An interface between Environmental Management, Economic Development and sustainable Spatial Planning are needed to bridge the Green-Value-Gap.

Projective Synchronization of a Class of Fractional-Order Chaotic Systems

This paper at first presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. After that a drive-response synchronization method with linear output error feedback is presented for “generalized projective synchronization" for a class of fractional-order chaotic systems via a scalar transmitted signal. Genesio_Tesi and Duffing systems are used to illustrate the effectiveness of the proposed synchronization method.

Effect of Channel Estimation on Capacity of MIMO System Employing Circular or Linear Receiving Array Antennas

This paper reports on investigations into capacity of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uniform linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is assumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering objects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. Calculations of the MIMO system capacity are performed for two cases without and with the channel estimation errors. For estimating the MIMO channel, the scaled least square (SLS) and minimum mean square error (MMSE) methods are considered.

VoIP and Database Traffic Co-existence over IEEE 802.11b WLAN with Redundancy

This paper presents the findings of two experiments that were performed on the Redundancy in Wireless Connection Model (RiWC) using the 802.11b standard. The experiments were simulated using OPNET 11.5 Modeler software. The first was aimed at finding the maximum number of simultaneous Voice over Internet Protocol (VoIP) users the model would support under the G.711 and G.729 codec standards when the packetization interval was 10 milliseconds (ms). The second experiment examined the model?s VoIP user capacity using the G.729 codec standard along with background traffic using the same packetization interval as in the first experiment. To determine the capacity of the model under various experiments, we checked three metrics: jitter, delay and data loss. When background traffic was added, we checked the response time in addition to the previous three metrics. The findings of the first experiment indicated that the maximum number of simultaneous VoIP users the model was able to support was 5, which is consistent with recent research findings. When using the G.729 codec, the model was able to support up to 16 VoIP users; similar experiments in current literature have indicated a maximum of 7 users. The finding of the second experiment demonstrated that the maximum number of VoIP users the model was able to support was 12, with the existence of background traffic.

Barriers to Knowledge Management: A Theoretical Framework and a Review of Industrial Cases

Firms have invested heavily in knowledge management (KM) with the aim to build a knowledge capability and use it to achieve a competitive advantage. Research has shown, however, that not all knowledge management projects succeed. Some studies report that about 84% of knowledge management projects fail. This paper has integrated studies on the impediments to knowledge management into a theoretical framework. Based on this framework, five cases documenting failed KM initiatives were analysed. The analysis gave us a clear picture about why certain KM projects fail. The high failure rate of KM can be explained by the gaps that exist between users and management in terms of KM perceptions and objectives

Design of SiC Capacitive Pressure Sensor with LC-Based Oscillator Readout Circuit

This paper presents the characterization and design of a capacitive pressure sensor with LC-based 0.35 µm CMOS readout circuit. SPICE is employed to evaluate the characteristics of the readout circuit and COMSOL multiphysics structural analysis is used to simulate the behavior of the pressure sensor. The readout circuit converts the capacitance variation of the pressure sensor into the frequency output. Simulation results show that the proposed pressure sensor has output frequency from 2.50 to 2.28 GHz in a pressure range from 0.1 to 2 MPa almost linearly. The sensitivity of the frequency shift with respect to the applied pressure load is 0.11 GHz/MPa.

Overview of Operational Risk Management Methods

Operational risk has become one of the most discussed topics in the financial industry in the recent years. The reasons for this attention can be attributed to higher investments in information systems and technology, the increasing wave of mergers and acquisitions and emergence of new financial instruments. In addition, the New Basel Capital Accord (known as Basel II) demands a capital requirement for operational risk and further motivates financial institutions to more precisely measure and manage this type of risk. The aim of this paper is to shed light on main characteristics of operational risk management and common applied methods: scenario analysis, key risk indicators, risk control self assessment and loss distribution approach.

Evaluation of Optimal Transfer Capability in Power System Interconnection

As the electrical power industry is restructured, the electrical power exchange is becoming extended. One of the key information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). To calculate ATC, traditional deterministic approach is based on the severest case, but the approach has the complexity of procedure. Therefore, novel approach for ATC calculation is proposed using cost-optimization method in this paper, and is compared with well-being method and risk-benefit method. This paper proposes the optimal transfer capability of HVDC system between mainland and a separated island in Korea through these three methods. These methods will consider production cost, wheeling charge through HVDC system and outage cost with one depth (N-1 contingency)

Towards Self-ware via Swarm-Array Computing

The work reported in this paper proposes Swarm-Array computing, a novel technique inspired by swarm robotics, and built on the foundations of autonomic and parallel computing. The approach aims to apply autonomic computing constructs to parallel computing systems and in effect achieve the self-ware objectives that describe self-managing systems. The constitution of swarm-array computing comprising four constituents, namely the computing system, the problem/task, the swarm and the landscape is considered. Approaches that bind these constituents together are proposed. Space applications employing FPGAs are identified as a potential area for applying swarm-array computing for building reliable systems. The feasibility of a proposed approach is validated on the SeSAm multi-agent simulator and landscapes are generated using the MATLAB toolkit.

Performance Evaluation of Prioritized Limited Processor-Sharing System

We propose a novel prioritized limited processor-sharing (PS) rule and a simulation algorithm for the performance evaluation of this rule. The performance measures of practical interest are evaluated using this algorithm. Suppose that there are two classes and that an arriving (class-1 or class-2) request encounters n1 class-1 and n2 class-2 requests (including the arriving one) in a single-server system. According to the proposed rule, class-1 requests individually and simultaneously receive m / (m * n1+ n2) of the service-facility capacity, whereas class-2 requests receive 1 / (m *n1 + n2) of it, if m * n1 + n2 ≤ C. Otherwise (m * n1 + n2 > C), the arriving request will be queued in the corresponding class waiting room or rejected. Here, m (1) denotes the priority ratio, and C ( ∞), the service-facility capacity. In this rule, when a request arrives at [or departs from] the system, the extension [shortening] of the remaining sojourn time of each request receiving service can be calculated using the number of requests of each class and the priority ratio. Employing a simulation program to execute these events and calculations enables us to analyze the performance of the proposed prioritized limited PS rule, which is realistic in a time-sharing system (TSS) with a sufficiently small time slot. Moreover, this simulation algorithm is expanded for the evaluation of the prioritized limited PS system with N  3 priority classes.

On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems

The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.

Determination and Assessment of Ground Motion and Spectral Parameters for Iran

Many studies have been conducted for derivation of attenuation relationships worldwide, however few relationships have been developed to use for the seismic region of Iranian plateau and only few of these studies have been conducted for derivation of attenuation relationships for parameters such as uniform duration. Uniform duration is the total time during which the acceleration is larger than a given threshold value (default is 5% of PGA). In this study, the database was same as that used previously by Ghodrati Amiri et al. (2007) with same correction methods for earthquake records in Iran. However in this study, records from earthquakes with MS< 4.0 were excluded from this database, each record has individually filtered afterward, and therefore the dataset has been expanded. These new set of attenuation relationships for Iran are derived based on tectonic conditions with soil classification into rock and soil. Earthquake parameters were chosen to be hypocentral distance and magnitude in order to make it easier to use the relationships for seismic hazard analysis. Tehran is the capital city of Iran wit ha large number of important structures. In this study, a probabilistic approach has been utilized for seismic hazard assessment of this city. The resulting uniform duration against return period diagrams are suggested to be used in any projects in the area.

Study of Efficiency and Capability LZW++ Technique in Data Compression

The purpose of this paper is to show efficiency and capability LZWµ in data compression. The LZWµ technique is enhancement from existing LZW technique. The modification the existing LZW is needed to produce LZWµ technique. LZW read one by one character at one time. Differ with LZWµ technique, where the LZWµ read three characters at one time. This paper focuses on data compression and tested efficiency and capability LZWµ by different data format such as doc type, pdf type and text type. Several experiments have been done by different types of data format. The results shows LZWµ technique is better compared to existing LZW technique in term of file size.

Support Vector Machines For Understanding Lane Color and Sidewalks

Understanding road features such as lanes, the color of lanes, and sidewalks in a live video captured from a moving vehicle is essential to build video-based navigation systems. In this paper, we present a novel idea to understand the road features using support vector machines. Various feature vectors including color components of road markings and the difference between two regions, i.e., chosen AOIs, and so on are fed into SVM, deciding colors of lanes and sidewalks robustly. Experimental results are provided to show the robustness of the proposed idea.

Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling

A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.

Removal of Malachite Green from Aqueous Solution using Hydrilla verticillata -Optimization, Equilibrium and Kinetic Studies

In this study, the sorption of Malachite green (MG) on Hydrilla verticillata biomass, a submerged aquatic plant, was investigated in a batch system. The effects of operating parameters such as temperature, adsorbent dosage, contact time, adsorbent size, and agitation speed on the sorption of Malachite green were analyzed using response surface methodology (RSM). The proposed quadratic model for central composite design (CCD) fitted very well to the experimental data that it could be used to navigate the design space according to ANOVA results. The optimum sorption conditions were determined as temperature - 43.5oC, adsorbent dosage - 0.26g, contact time - 200min, adsorbent size - 0.205mm (65mesh), and agitation speed - 230rpm. The Langmuir and Freundlich isotherm models were applied to the equilibrium data. The maximum monolayer coverage capacity of Hydrilla verticillata biomass for MG was found to be 91.97 mg/g at an initial pH 8.0 indicating that the optimum sorption initial pH. The external and intra particle diffusion models were also applied to sorption data of Hydrilla verticillata biomass with MG, and it was found that both the external diffusion as well as intra particle diffusion contributes to the actual sorption process. The pseudo-second order kinetic model described the MG sorption process with a good fitting.