Performance Comparison between Sliding Mode Control (SMC) and PD-PID Controllers for a Nonlinear Inverted Pendulum System

The objective of this paper is to compare the time specification performance between conventional controller PID and modern controller SMC for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum-s angle and cart-s position. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. Two controllers are presented such as Sliding Mode Control (SMC) and Proportional- Integral-Derivatives (PID) controllers for controlling the highly nonlinear system of inverted pendulum model. Simulation study has been done in Matlab Mfile and simulink environment shows that both controllers are capable to control multi output inverted pendulum system successfully. The result shows that Sliding Mode Control (SMC) produced better response compared to PID control strategies and the responses are presented in time domain with the details analysis.

[1] A. Ghanbarie and M. Farrokhi, "Decentralized decoupled sliding-mode
control for two-dimensional inverted pendulum using neuro-fuzzy
modeling," Proc. of IEEE Int. Conf. on Engineering of Intelligent
Systems, pp. 1-6, Sept. 2006.
[2] Q.-R. Li, W.-H. Tao, N. Sun, C.-Y. Zhang and L.-H. Yao, "Stabilization
control of double inverted pendulum system," Proc. of 3rd Int. Conf. on
Innovative Computing, Information and Control, pp. 417-420, 2008.
[3] J. Xie, X. Xu and K. Xie, "Modelling and simulation of the inverted
pendulum based on granular hybrid system," Proc. of Control and
Decision Conf., pp. 3795-3799, 2008.
[4] W. J. Chen, L. Fang and K. K. Lei, "Fuzzy logic controller for an
inverted pendulum system," Proc. of IEEE Int. Conf. on Intelligent
Processing Systems, pp. 185-189, Oct. 1997.
[5] Carnegie Mellon, University of Michigan. [Online]. Available:
[6] M. Y. Sam, J. H. S. Osman and R. A. Ghani, "Proportional integral
sliding mode control of a quarter car active suspension," Proc. of
IEEE Region 10 Conf. on Computers, Communications, Control and
Power Engineering, vol. 3, pp. 1630-1633, Oct. 2002.
[7] N. S. Nise, Control System Engineering. New York: John Wiley & Son,
[8] A. N. K. Nasir, M. A. Ahmad and M. F. Rahmat, "Performance
comparison between LQR and PID controller for an inverted pendulum
system," Proc. of Int. Conf. on Power, Control and Optimization, vol.
1052, pp. 124-128, Oct. 2008.
[9] M. F. Abdollah, "Proportional Integral Sliding Mode Control of A Two-
Wheeled Balancing Robot." Master-s thesis, Faculty of Electrical
Engineering, Universiti Teknologi Malaysia, 2006.
[10] C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and
Applications. London: Taylor & Francis, 1998.