Effective Collaboration in Product Development via a Common Sharable Ontology

To achieve competitive advantage nowadays, most of the industrial companies are considering that success is sustained to great product development. That is to manage the product throughout its entire lifetime ranging from design, manufacture, operation and destruction. Achieving this goal requires a tight collaboration between partners from a wide variety of domains, resulting in various product data types and formats, as well as different software tools. So far, the lack of a meaningful unified representation for product data semantics has slowed down efficient product development. This paper proposes an ontology based approach to enable such semantic interoperability. Generic and extendible product ontology is described, gathering main concepts pertaining to the mechanical field and the relations that hold among them. The ontology is not exhaustive; nevertheless, it shows that such a unified representation is possible and easily exploitable. This is illustrated thru a case study with an example product and some semantic requests to which the ontology responds quite easily. The study proves the efficiency of ontologies as a support to product data exchange and information sharing, especially in product development environments where collaboration is not just a choice but a mandatory prerequisite.

Fuzzy Control of Macroeconomic Models

The optimal control is one of the possible controllers for a dynamic system, having a linear quadratic regulator and using the Pontryagin-s principle or the dynamic programming method . Stochastic disturbances may affect the coefficients (multiplicative disturbances) or the equations (additive disturbances), provided that the shocks are not too great . Nevertheless, this approach encounters difficulties when uncertainties are very important or when the probability calculus is of no help with very imprecise data. The fuzzy logic contributes to a pragmatic solution of such a problem since it operates on fuzzy numbers. A fuzzy controller acts as an artificial decision maker that operates in a closed-loop system in real time. This contribution seeks to explore the tracking problem and control of dynamic macroeconomic models using a fuzzy learning algorithm. A two inputs - single output (TISO) fuzzy model is applied to the linear fluctuation model of Phillips and to the nonlinear growth model of Goodwin.

Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms

The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.

Recent Advances on Computational Proteomics

In this work we report the recent progresses that have been achieved by our group in the last half decade on the field of computational proteomics. Specifically, we discuss the application of Molecular Dynamics Simulations and Electronic Structure Calculations in drug design, in the clarification of the structural and dynamic properties of proteins and enzymes and in the understanding of the catalytic and inhibition mechanism of cancer-related enzymes. A set of examples illustrate the concepts and help to introduce the reader into this important and fast moving field.

Co-composting Cow Manure with Food Waste: The Influence of Lipids Content

Addition of an oily waste to a co-composting process of dairy cow manure with food waste, and the influence in the final product was evaluated. Three static composting piles with different substrates concentrations were assessed. Sawdust was also added to all composting piles to attain 60%, humidity at the beginning of the process. In pile 1, the co-substrates were the solid-phase of dairy cow manure, food waste and sawdust as bulking agent. In piles 2 and 3 there was an extra input of oily waste of 7 and 11% of the total volume, respectively, corresponding to 18 and 28% in dry weight. The results showed that the co-composting process was feasible even at the highest fat content. Another positive effect due to the oily waste addition was the requirement of extra humidity, due to the hydrophobic properties of this specific waste, which may imply reduced need of a bulking agent. Moreover, this study shows that composting can be a feasible way of adding value to fatty wastes. The three final composts presented very similar and suitable properties for land application.

Influence of Laminated Textile Structures on Mechanical Performance of NF-Epoxy Composites

Textile structures are engineered and fabricated to meet worldwide structural applications. Nevertheless, research varying textile structure on natural fibre as composite reinforcement was found to be very limited. Most of the research is focusing on short fibre and random discontinuous orientation of the reinforcement structure. Realizing that natural fibre (NF) composite had been widely developed to be used as synthetic fibre composite replacement, this research attempted to examine the influence of woven and cross-ply laminated structure towards its mechanical performances. Laminated natural fibre composites were developed using hand lay-up and vacuum bagging technique. Impact and flexural strength were investigated as a function of fibre type (coir and kenaf) and reinforcement structure (imbalanced plain woven, 0°/90° cross-ply and +45°/-45° cross-ply). Multi-level full factorial design of experiment (DOE) and analysis of variance (ANOVA) was employed to impart data as to how fibre type and reinforcement structure parameters affect the mechanical properties of the composites. This systematic experimentation has led to determination of significant factors that predominant influences the impact and flexural properties of the textile composites. It was proven that both fibre type and reinforcement structure demonstrated significant difference results. Overall results indicated that coir composite and woven structure exhibited better impact and flexural strength. Yet, cross-ply composite structure demonstrated better fracture resistance.

Re-Engineering the Human: New Reproductive Technologies and the Specter of Frankenstein

The virulent debates that have dogged research on, and the diffusion of, a wide range of technologies indicate a growing loss of confidence in what we might call, the techno-scientific endeavour to reshape the world. Utopian images of a world rendered ever more amenable to human desires are now closely shadowed by just as compelling dystopian visions of monstrosity and disaster that are nevertheless constructed from the same cultural material. The paper uses the case of the debates over developments in reproductive technology to offer some observations on the ways in which such technologies routinely become enmirred in cultural ambivalence.

Use of Multiple Linear Regressions to Evaluate the Influence of O3 and PM10 on Biological Pollutants

Exposure to ambient air pollution has been linked to a number of health outcomes, starting from modest transient changes in the respiratory tract and impaired pulmonary function, continuing to restrict activity/reduce performance and to the increase emergency rooms visits, hospital admissions or mortality. The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, fungal spores and pollen. Considering the potential relevance of crossed effects of nonbiological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants (O3 and PM10) and meteorological parameters on the concentrations of pollen and fungal spores using multiple linear regressions. The data considered in this study were collected in Oporto which is the second largest Portuguese city, located in the North. Daily mean of O3, PM10, pollen and fungal spore concentrations, temperature, relative humidity, precipitation, wind velocity, pollen and fungal spore concentrations, for 2003, 2004 and 2005 were considered. Results showed that the 90th percentile of the adjusted coefficient of determination, P90 (R2aj), of the multiple regressions varied from 0.613 to 0.916 for pollen and from 0.275 to 0.512 for fungal spores. O3 and PM10 showed to have some influence on the biological pollutants. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations. Relative humidity also showed to have some influence on the fungal spore dispersion. Nevertheless, the models for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant can not be, even so, consistent enough.

A Novel Adaptive E-Learning Model Based on Developed Learner's Styles

Adaptive e-learning today gives the student a central role in his own learning process. It allows learners to try things out, participate in courses like never before, and get more out of learning than before. In this paper, an adaptive e-learning model for logic design, simplification of Boolean functions and related fields is presented. Such model presents suitable courses for each student in a dynamic and adaptive manner using existing database and workflow technologies. The main objective of this research work is to provide an adaptive e-learning model based learners' personality using explicit and implicit feedback. To recognize the learner-s, we develop dimensions to decide each individual learning style in order to accommodate different abilities of the users and to develop vital skills. Thus, the proposed model becomes more powerful, user friendly and easy to use and interpret. Finally, it suggests a learning strategy and appropriate electronic media that match the learner-s preference.

Adaptive Non-linear Filtering Technique for Image Restoration

Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.

Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity

Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.

Effect of Passive Modified Atmosphere in Different Packaging Materials on Fresh-Cut Mixed Fruit Salad Quality during Storage

Experiments were carried out at the Latvia State Institute of Fruit-Growing in 2011. Fresh-cut minimally processed apple and pear mixed salad were packed by passive modified atmosphere (MAP) in PP containers, which were hermetically sealed by breathable conventional BOPP PropafreshTM P2GAF, and Amcor Agrifresh films. Biodegradable NatureFlexTM NVS INNOVIA Films and VC999 BioPack PLA films coated with a barrier of pure silicon oxide (SiOx) were used to compare the fresh-cut produce quality with this packed in conventional packaging films. Samples were cold stored at temperature +4.0±0.5 °C up to 10 days. The quality of salad was evaluated by physicochemical properties – weight losses, moisture, firmness, the effect of packaging modes on the colour, dynamics in headspace atmosphere concentration (CO2 and O2), titratable acidity values, as well as by microbiological contamination (yeasts, moulds and total bacteria count) of salads, analyzing before packaging and after 2, 4, 6, 8, and 10 storage days.

A Novel Multiplex Real-Time PCR Assay Using TaqMan MGB Probes for Rapid Detection of Trisomy 21

Cytogenetic analysis still remains the gold standard method for prenatal diagnosis of trisomy 21 (Down syndrome, DS). Nevertheless, the conventional cytogenetic analysis needs live cultured cells and is too time-consuming for clinical application. In contrast, molecular methods such as FISH, QF-PCR, MLPA and quantitative Real-time PCR are rapid assays with results available in 24h. In the present study, we have successfully used a novel MGB TaqMan probe-based real time PCR assay for rapid diagnosis of trisomy 21 status in Down syndrome samples. We have also compared the results of this molecular method with corresponding results obtained by the cytogenetic analysis. Blood samples obtained from DS patients (n=25) and normal controls (n=20) were tested by quantitative Real-time PCR in parallel to standard G-banding analysis. Genomic DNA was extracted from peripheral blood lymphocytes. A high precision TaqMan probe quantitative Real-time PCR assay was developed to determine the gene dosage of DSCAM (target gene on 21q22.2) relative to PMP22 (reference gene on 17p11.2). The DSCAM/PMP22 ratio was calculated according to the formula; ratio=2 -ΔΔCT. The quantitative Real-time PCR was able to distinguish between trisomy 21 samples and normal controls with the gene ratios of 1.49±0.13 and 1.03±0.04 respectively (p value

A Study on Reducing Malicious Replies on the Internet: An Approach by Game Theory

Since the advent of the information era, the Internet has brought various positive effects in everyday life. Nevertheless, recently, problems and side-effects have been noted. Internet witch-trials and spread of pornography are only a few of these problems.In this study, problems and causes of malicious replies on internet boards were analyzed, using the key ideas of game theory. The study provides a mathematical model for the internet reply game to devise three possible plans that could efficiently counteract malicious replies. Furthermore, seven specific measures that comply with one of the three plans were proposed and evaluated according to the importance and utility of each measure using the orthogonal array survey and SPSS conjoint analysis.The conclusion was that the most effective measure would be forbidding unsigned user access to malicious replies. Also notable was that some analytically proposed measures, when implemented, could backfire and encourage malicious replies.

Customer-Supplier Collaboration in Casting Industry: a Review on Organizational and Human Aspects

Customer-supplier collaboration enables firms to achieve greater success than acting independently. Nevertheless, not many firms have fully utilized the potential of collaboration. This paper presents organizational and human related success factors for collaboration in manufacturing supply chains in casting industry. Our research approach was a case study including multiple cases. Data was gathered by interviews and group discussions in two different research projects. In the first research project we studied seven firms and in the second five. It was found that the success factors are interrelated, in other words, organizational and human factors together enable success but not any of them alone. Some of the found success factors are a culture of following agreements, and a speed of informing the partner about changes affecting to the product or the delivery chain.

Synchronization of 0.1 Hz Oscillations in Heart Rate and Blood Pressure: Application to Treatment of Myocardial Infarction Patients

Synchronization between 0.1 Hz oscillations in heart rate and blood pressure is studied and its change during vertical tilt is evaluated in 37 myocardial infarction patients. Two groups of patients are identified with decreased and increased, respectively, synchronization of the studied oscillations as a response to a tilt test. It is shown that assessment of synchronization of 0.1 Hz oscillations as a response to vertical tilt can be used as a guideline for selecting optimal dose of beta-blocker treatment in post-myocardial infarction patients.

Gate Tunnel Current Calculation for NMOSFET Based on Deep Sub-Micron Effects

Aggressive scaling of MOS devices requires use of ultra-thin gate oxides to maintain a reasonable short channel effect and to take the advantage of higher density, high speed, lower cost etc. Such thin oxides give rise to high electric fields, resulting in considerable gate tunneling current through gate oxide in nano regime. Consequently, accurate analysis of gate tunneling current is very important especially in context of low power application. In this paper, a simple and efficient analytical model has been developed for channel and source/drain overlap region gate tunneling current through ultra thin gate oxide n-channel MOSFET with inevitable deep submicron effect (DSME).The results obtained have been verified with simulated and reported experimental results for the purpose of validation. It is shown that the calculated tunnel current is well fitted to the measured one over the entire oxide thickness range. The proposed model is suitable enough to be used in circuit simulator due to its simplicity. It is observed that neglecting deep sub-micron effect may lead to large error in the calculated gate tunneling current. It is found that temperature has almost negligible effect on gate tunneling current. It is also reported that gate tunneling current reduces with the increase of gate oxide thickness. The impact of source/drain overlap length is also assessed on gate tunneling current.

Narrative and Expository Text Reading Comprehension by Fourth Grade Spanish-Speaking Children

This work aims to explore the factors that have an incidence in reading comprehension process, with different type of texts. In a recent study with 2nd, 3rd and 4th grade children, it was observed that reading comprehension of narrative texts was better than comprehension of expository texts. Nevertheless it seems that not only the type of text but also other textual factors would account for comprehension depending on the cognitive processing demands posed by the text. In order to explore this assumption, three narrative and three expository texts were elaborated with different degree of complexity. A group of 40 fourth grade Spanish-speaking children took part in the study. Children were asked to read the texts and answer orally three literal and three inferential questions for each text. The quantitative and qualitative analysis of children responses showed that children had difficulties in both, narrative and expository texts. The problem was to answer those questions that involved establishing complex relationships among information units that were present in the text or that should be activated from children’s previous knowledge to make an inference. Considering the data analysis, it could be concluded that there is some interaction between the type of text and the cognitive processing load of a specific text.

Two Undetectable On-line Dictionary Attacks on Debiao et al.’s S-3PAKE Protocol

In 2011, Debiao et al. pointed out that S-3PAKE protocol proposed by Lu and Cao for password-authenticated key exchange in the three-party setting is vulnerable to an off-line dictionary attack. Then, they proposed some countermeasures to eliminate the security vulnerability of the S-3PAKE. Nevertheless, this paper points out their enhanced S-3PAKE protocol is still vulnerable to undetectable on-line dictionary attacks unlike their claim.

Conservation and Repair Works for Traditional Timber Mosque in Malaysia: A Review on Techniques

Building life cycle will never be excused from the existence of defects and deterioration. They are common problems in building, existed in newly build or in aged building. Buildings constructed from wood are indeed affected by its agent and serious defects and damages can reduce values to a building. In repair works, it is important to identify the causes and repair techniques that best suites with the condition. This paper reviews the conservation of traditional timber mosque in Malaysia comprises the concept, principles and approaches of mosque conservation in general. As in conservation practice, wood in historic building can be conserved by using various restoration and conservation techniques which this can be grouped as Fully and Partial Replacement, Mechanical Reinforcement, Consolidation by Impregnation and Reinforcement, Removing Paint and also Preservation of Wood and Control Insect Invasion, as to prolong and extended the function of a timber in a building. It resulted that the common techniques adopted in timber mosque conservation are from the conventional ways and the understanding of the repair technique requires the use of only preserve wood to prevent the future immature defects.