Odor Discrimination Using Neural Decoding of Olfactory Bulbs in Rats

This paper presents a novel method for inferring the odor based on neural activities observed from rats- main olfactory bulbs. Multi-channel extra-cellular single unit recordings were done by micro-wire electrodes (tungsten, 50μm, 32 channels) implanted in the mitral/tufted cell layers of the main olfactory bulb of anesthetized rats to obtain neural responses to various odors. Neural response as a key feature was measured by substraction of neural firing rate before stimulus from after. For odor inference, we have developed a decoding method based on the maximum likelihood (ML) estimation. The results have shown that the average decoding accuracy is about 100.0%, 96.0%, 84.0%, and 100.0% with four rats, respectively. This work has profound implications for a novel brain-machine interface system for odor inference.

Direction to Manage OTOP Entrepreneurship Based on Local Wisdom

The OTOP Entrepreneurship that used to create substantial source of income for local Thai communities are now in a stage of exigent matters that required assistances from public sectors due to over Entrepreneurship of duplicative ideas, unable to adjust costs and prices, lack of innovation, and inadequate of quality control. Moreover, there is a repetitive problem of middlemen who constantly corner the OTOP market. Local OTOP producers become easy preys since they do not know how to add more values, how to create and maintain their own brand name, and how to create proper packaging and labeling. The suggested solutions to local OTOP producers are to adopt modern management techniques, to find knowhow to add more values to products and to unravel other marketing problems. The objectives of this research are to study the prevalent OTOP products management and to discover direction to manage OTOP products to enhance the effectiveness of OTOP Entrepreneurship in Nonthaburi Province, Thailand. There were 113 participants in this study. The research tools can be divided into two parts: First part is done by questionnaire to find responses of the prevalent OTOP Entrepreneurship management. Second part is the use of focus group which is conducted to encapsulate ideas and local wisdom. Data analysis is performed by using frequency, percentage, mean, and standard deviation as well as the synthesis of several small group discussions. The findings reveal that 1) Business Resources: the quality of product is most important and the marketing of product is least important. 2) Business Management: Leadership is most important and raw material planning is least important. 3) Business Readiness: Communication is most important and packaging is least important. 4) Support from public sector: Certified from the government is most important and source of raw material is the least important.

Physiological and Biochemical Responses to Drought Stress of Chickpea Genotypes

The experimental design was 4 x 5 factorial with three replications in fully controlled research greenhouse in Department of Soil Sciences and Plant Nutrition, Faculty of Agriculture, University of Selcuk in the year of 2009. Determination of tolerant chickpea genotypes to drought was made in the research. Additionally, sophisticated effects of drought on plant growth and development, biochemical and physical properties or physical defense mechanisms were presented. According to the results, the primary genotypes were Ilgın YP (0.0063 g/gh) for leaf water capacity, 22235 70.44(%) for relative water content, 22159 (82.47%) for real water content, 22159 (5.03 mg/l) for chlorophyll a+b, Ilgın YP (125.89 nmol H2O2.dak-1/ mg protein-1) for peroxidase, Yunak YP (769.67 unit/ mg protein-1) for superoxide dismutase, Seydişehir YP (16.74 μg.TA-1) for proline, Gökçe (80.01 nmol H2O2.dak-1/ mg protein-1) for catalase. Consequently, all the genotypes increased their enzyme activity depending on the increasing of drought stress consider with the effects of drought stress on leaf enzyme activity. Chickpea genotypes are increasing enzyme activity against to drought stress.

A Low Complexity Frequency Offset Estimation for MB-OFDM based UWB Systems

A low-complexity, high-accurate frequency offset estimation for multi-band orthogonal frequency division multiplexing (MB-OFDM) based ultra-wide band systems is presented regarding different carrier frequency offsets, different channel frequency responses, different preamble patterns in different bands. Utilizing a half-cycle Constant Amplitude Zero Auto Correlation (CAZAC) sequence as the preamble sequence, the estimator with a semi-cross contrast scheme between two successive OFDM symbols is proposed. The CRLB and complexity of the proposed algorithm are derived. Compared to the reference estimators, the proposed method achieves significantly less complexity (about 50%) for all preamble patterns of the MB-OFDM systems. The CRLBs turn out to be of well performance.

Inferring the Dynamics of “Hidden“ Neurons from Electrophysiological Recordings

Statistical analysis of electrophysiological recordings obtained under, e.g. tactile, stimulation frequently suggests participation in the network dynamics of experimentally unobserved “hidden" neurons. Such interneurons making synapses to experimentally recorded neurons may strongly alter their dynamical responses to the stimuli. We propose a mathematical method that formalizes this possibility and provides an algorithm for inferring on the presence and dynamics of hidden neurons based on fitting of the experimental data to spike trains generated by the network model. The model makes use of Integrate and Fire neurons “chemically" coupled through exponentially decaying synaptic currents. We test the method on simulated data and also provide an example of its application to the experimental recording from the Dorsal Column Nuclei neurons of the rat under tactile stimulation of a hind limb.

Reduced Order Modelling of Linear Dynamic Systems using Particle Swarm Optimized Eigen Spectrum Analysis

The authors present an algorithm for order reduction of linear time invariant dynamic systems using the combined advantages of the eigen spectrum analysis and the error minimization by particle swarm optimization technique. Pole centroid and system stiffness of both original and reduced order systems remain same in this method to determine the poles, whereas zeros are synthesized by minimizing the integral square error in between the transient responses of original and reduced order models using particle swarm optimization technique, pertaining to a unit step input. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The algorithm is illustrated with the help of two numerical examples and the results are compared with the other existing techniques.

Statistical Process Optimization Through Multi-Response Surface Methodology

In recent years, response surface methodology (RSM) has brought many attentions of many quality engineers in different industries. Most of the published literature on robust design methodology is basically concerned with optimization of a single response or quality characteristic which is often most critical to consumers. For most products, however, quality is multidimensional, so it is common to observe multiple responses in an experimental situation. Through this paper interested person will be familiarize with this methodology via surveying of the most cited technical papers. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with more than two responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.

Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology

Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.

Narrative and Expository Text Reading Comprehension by Fourth Grade Spanish-Speaking Children

This work aims to explore the factors that have an incidence in reading comprehension process, with different type of texts. In a recent study with 2nd, 3rd and 4th grade children, it was observed that reading comprehension of narrative texts was better than comprehension of expository texts. Nevertheless it seems that not only the type of text but also other textual factors would account for comprehension depending on the cognitive processing demands posed by the text. In order to explore this assumption, three narrative and three expository texts were elaborated with different degree of complexity. A group of 40 fourth grade Spanish-speaking children took part in the study. Children were asked to read the texts and answer orally three literal and three inferential questions for each text. The quantitative and qualitative analysis of children responses showed that children had difficulties in both, narrative and expository texts. The problem was to answer those questions that involved establishing complex relationships among information units that were present in the text or that should be activated from children’s previous knowledge to make an inference. Considering the data analysis, it could be concluded that there is some interaction between the type of text and the cognitive processing load of a specific text.

Sport Psychological Constructs Related To Participation in the 2009 World Masters Games

Whilst there is growing evidence that activity across the lifespan is beneficial for improved health, there are also many changes involved with the aging process and subsequently the potential for reduced indices of health. The nexus between all forms of health, physical activity and aging is complex and has raised much interest in recent times due to the realization that a multifaceted approached is necessary in order to counteract a growing obesity epidemic. By investigating age based trends within a population adherring to competitive sport at older ages, further insight might be gleaned to assist in understanding one of many factors influencing this relationship. This study evaluated those sport psychological constructs of health, physical fitness, mental health states, and social dimension factors in sport that were associated with factors to participate in sport and physical activity based on responses from the 2009 World Masters Games in Sydney. The sample consisted of 7846 athletes who competed at the games and who completed a 56 item sports participation survey using a 7-point Likert response (1 - not important to 7 - very important). Questions focuses on factors thought to promote participation, such as weight control, living longer, improving mental health (self-esteem, mood states), improving physical health and factors related to the athlete-s competitive perspective. The most significant factors related to participation with this cohort of masters athletes were the socializing environment of sport, getting physically fit and improving competitive personal best performances. Strategies to increase participation in masters sport should focus on these factors as other factors such as weight loss, improving mental health and living longer were not identified as important determinates of sports participation at the World Masters level.

Wiener Filter as an Optimal MMSE Interpolator

The ideal sinc filter, ignoring the noise statistics, is often applied for generating an arbitrary sample of a bandlimited signal by using the uniformly sampled data. In this article, an optimal interpolator is proposed; it reaches a minimum mean square error (MMSE) at its output in the presence of noise. The resulting interpolator is thus a Wiener filter, and both the optimal infinite impulse response (IIR) and finite impulse response (FIR) filters are presented. The mean square errors (MSE-s) for the interpolator of different length impulse responses are obtained by computer simulations; it shows that the MSE-s of the proposed interpolators with a reasonable length are improved about 0.4 dB under flat power spectra in noisy environment with signal-to-noise power ratio (SNR) equal 10 dB. As expected, the results also demonstrate the improvements for the MSE-s with various fractional delays of the optimal interpolator against the ideal sinc filter under a fixed length impulse response.

Quasi Multi-Pulse Back-to-Back Static Synchronous Compensator Employing Line Frequency Switching 2-Level GTO Inverters

Back-to-back static synchronous compensator (BtBSTATCOM) consists of two back-to-back voltage-source converters (VSC) with a common DC link in a substation. This configuration extends the capabilities of conventional STATCOM that bidirectional active power transfer from one bus to another is possible. In this paper, VSCs are designed in quasi multi-pulse form in which GTOs are triggered only once per cycle in PSCAD/EMTDC. The design details of VSCs as well as gate switching circuits and controllers are fully represented. Regulation modes of BtBSTATCOM are verified and tested on a multi-machine power system through different simulation cases. The results presented in the form of typical time responses show that practical PI controllers are almost robust and stable in case of start-up, set-point change, and line faults.

Haematological Characterization of Reproductive Status at Laying Hens by Age

Physiological activity of the pineal gland with specific responses in the reproductive territory may be interpreted by monitoring the process parameters used in poultry practice in different age batches of laying hens. As biological material were used 105 laying hens, clinically healthy, belonging to ALBO SL- 2000 hybrid, raised on ground, from which blood samples were taken at the age of 12 and 28 weeks. The haematological examinations were concerned to obtain the total number of erythrocytes and leukocytes and the main erythrocyte constant (RBC, PCV, MCV, MCH, MCHC and WBC). The results allow the interpretation of the reproductive status through the dynamics of the presented values.

Rapid Frequency Response Measurement of Power Conversion Products with Coherence-Based Confidence Analysis

Switched-mode converters play now a significant role in modern society. Their operation are often crucial in various electrical applications affecting the every day life. Therefore, the quality of the converters needs to be reliably verified. Recent studies have shown that the converters can be fully characterized by a set of frequency responses which can be efficiently used to validate the proper operation of the converters. Consequently, several methods have been proposed to measure the frequency responses fast and accurately. Most often correlation-based techniques have been applied. The presented measurement methods are highly sensitive to external errors and system nonlinearities. This fact has been often forgotten and the necessary uncertainty analysis of the measured responses has been neglected. This paper presents a simple approach to analyze the noise and nonlinearities in the frequency-response measurements of switched-mode converters. Coherence analysis is applied to form a confidence interval characterizing the noise and nonlinearities involved in the measurements. The presented method is verified by practical measurements from a high-frequency switchedmode converter.

Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks

Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.

Bond Graph Modeling of Inter-Actuator Interactions in a Multi-Cylinder Hydraulic System

In this paper, a bond graph dynamic model for a valvecontrolled hydraulic cylinder has been developed. A simplified bond graph model of the inter-actuator interactions in a multi-cylinder hydraulic system has also been presented. The overall bond graph model of a valve-controlled hydraulic cylinder was developed by combining the bond graph sub-models of the pump, spool valve and the actuator using junction structures. Causality was then assigned in order to obtain a computational model which could be simulated. The causal bond graph model of the hydraulic cylinder was verified by comparing the open loop state responses to those of an ODE model which had been developed in literature based on the same assumptions. The results were found to correlate very well both in the shape of the curves, magnitude and the response times, thus indicating that the developed model represents the hydraulic dynamics of a valve-controlled cylinder. A simplified model for interactuator interaction was presented by connecting an effort source with constant pump pressure to the zero-junction from which the cylinders in a multi-cylinder system are supplied with a constant pressure from the pump. On simulating the state responses of the developed model under different situations of cylinder operations, indicated that such a simple model can be used to predict the inter-actuator interactions.

Development of a Health Literacy Scale for Chinese-Speaking Adults in Taiwan

Background, measuring an individual-s Health Literacy is gaining attention, yet no appropriate instrument is available in Taiwan. Measurement tools that were developed and used in western countries may not be appropriate for use in Taiwan due to a different language system. Purpose of this research was to develop a Health Literacy measurement instrument specific for Taiwan adults. Methods, several experts of clinic physicians; healthcare administrators and scholars identified 125 common used health related Chinese phrases from major medical knowledge sources that easy accessible to the public. A five-point Likert scale is used to measure the understanding level of the target population. Such measurement is then used to compare with the correctness of their answers to a health knowledge test for validation. Samples, samples under study were purposefully taken from four groups of people in the northern Pingtung, OPD patients, university students, community residents, and casual visitors to the central park. A set of health knowledge index with 10 questions is used to screen those false responses. A sample size of 686 valid cases out of 776 was then included to construct this scale. An independent t-test was used to examine each individual phrase. The phrases with the highest significance are then identified and retained to compose this scale. Result, a Taiwan Health Literacy Scale (THLS) was finalized with 66 health-related phrases under nine divisions. Cronbach-s alpha of each division is at a satisfactory level of 89% and above. Conclusions, factors significantly differentiate the levels of health literacy are education, female gender, age, family members of stroke victims, experience with patient care, and healthcare professionals in the initial application in this study..

Design of Communication Primitives for Satellite Networks Management

According to the mobility of the satellite network nodes and the characteristic of management domain dynamic partition in the satellite network, the login and logout mechanism of the satellite network dynamic management domain partition was proposed in the paper. In the mechanism, a ground branch-station sends the packets of login broadcasting to satellites in view. After received the packets, the SNMP agents on the satellites adopt link-delay test to respond. According to the mechanism, the SNMP primitives were extended, and the new added primitives were as follows: broadcasting, login, login confirmation,delay_testing, test responses, and logout. The definition of primitives, which followed RFC1157 criterion, could be encoded by the BER coding. The policy of the dynamic management domain partition on the basis of the login and logout mechanism, which was supported by the SNMP protocol, was realized by the design of the extended primitives.

Characterization of Three Photodetector Types for Computed Tomography Dosimetry

In this study three commercial semiconductor devices were characterized in the laboratory for computed tomography dosimetry: one photodiode and two phototransistors. It was evaluated four responses to the irradiation: dose linearity, energy dependence, angular dependence and loss of sensitivity after X ray exposure. The results showed that the three devices have proportional response with the air kerma; the energy dependence displayed for each device suggests that some calibration factors would be applied for each one; the angular dependence showed a similar pattern among the three electronic components. In respect to the fourth parameter analyzed, one phototransistor has the highest sensitivity however it also showed the greatest loss of sensitivity with the accumulated dose. The photodiode was the device with the smaller sensitivity to radiation, on the other hand, the loss of sensitivity after irradiation is negligible. Since high accuracy is a desired feature for a dosimeter, the photodiode can be the most suitable of the three devices for dosimetry in tomography. The phototransistors can also be used for CT dosimetry, however it would be necessary a correction factor due to loss of sensitivity with accumulated dose.

Optimal Combination for Modal Pushover Analysis by Using Genetic Algorithm

In order to consider the effects of the higher modes in the pushover analysis, during the recent years several multi-modal pushover procedures have been presented. In these methods the response of the considered modes are combined by the square-rootof- sum-of-squares (SRSS) rule while application of the elastic modal combination rules in the inelastic phases is no longer valid. In this research the feasibility of defining an efficient alternative combination method is investigated. Two steel moment-frame buildings denoted SAC-9 and SAC-20 under ten earthquake records are considered. The nonlinear responses of the structures are estimated by the directed algebraic combination of the weighted responses of the separate modes. The weight of the each mode is defined so that the resulted response of the combination has a minimum error to the nonlinear time history analysis. The genetic algorithm (GA) is used to minimize the error and optimize the weight factors. The obtained optimal factors for each mode in different cases are compared together to find unique appropriate weight factors for each mode in all cases.