Influence of Deep Cold Rolling and Low Plasticity Burnishing on Surface Hardness and Surface Roughness of AISI 4140 Steel

Deep cold rolling (DCR) and low plasticity burnishing (LPB) process are cold working processes, which easily produce a smooth and work-hardened surface by plastic deformation of surface irregularities. The present study focuses on the surface roughness and surface hardness aspects of AISI 4140 work material, using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in order to identify the predominant factors amongst the selected parameters. They were then categorized in order of significance followed by setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. In the present work, the influence of main process parameters (force, feed rate, number of tool passes/overruns, initial roughness of the work piece, ball material, ball diameter and lubricant used) on the surface roughness and the hardness of AISI 4140 steel were studied for both LPB and DCR process and the results are compared. It was observed that by using LPB process surface hardness has been improved by 167% and in DCR process surface hardness has been improved by 442%. It was also found that the force, ball diameter, number of tool passes and initial roughness of the workpiece are the most pronounced parameters, which has a significant effect on the work piece-s surface during deep cold rolling and low plasticity burnishing process.

In Search of Robustness and Efficiency via l1− and l2− Regularized Optimization for Physiological Motion Compensation

Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of 1−and 2−regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the 1−regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.

Health Hazards Related to Computer Use: Experience of the National Institute for Medical Research in Tanzania

This paper is based on a study conducted in 2006 to assess the impact of computer usage on health of National Institute for Medical Research (NIMR) staff. NIMR being a research Institute, most of its staff spend substantial part of their working time on computers. There was notion among NIMR staff on possible prolonged computer usage health hazards. Hence, a study was conducted to establish facts and possible mitigation measures. A total of 144 NIMR staff were involved in the study of whom 63.2% were males and 36.8% females aged between 20 and 59 years. All staff cadres were included in the sample. The functions performed by Institute staff using computers includes; data management, proposal development and report writing, research activities, secretarial duties, accounting and administrative duties, on-line information retrieval and online communication through e-mail services. The interviewed staff had been using computers for 1-8 hours a day and for a period ranging from 1 to 20 years. The study has indicated ergonomic hazards for a significant proportion of interviewees (63%) of various kinds ranging from backache to eyesight related problems. The authors highlighted major issues which are substantially applicable in preventing occurrences of computer related problems and they urged NIMR Management and/or the government of Tanzania opts to adapt their practicability.

Production and Remanufacturing of Returned Products in Supply Chain using Modified Genetic Algorithm

In recent years, environment regulation forcing manufactures to consider recovery activity of end-of- life products and/or return products for refurbishing, recycling, remanufacturing/repair and disposal in supply chain management. In this paper, a mathematical model is formulated for single product production-inventory system considering remanufacturing/reuse of return products and rate of return products follows a demand like function, dependent on purchasing price and acceptance quality level. It is useful in decision making to determine whether to go for remanufacturing or disposal of returned products along with newly produced products to satisfy a stationary demand. In addition, a modified genetic algorithm approach is proposed, inspired by particle swarm optimization method. Numerical analysis of the case study is carried out to validate the model.

Taking People, Process and Partnership on Board for Participatory Decision Making

Public administration institutions in cooperation with politicians are not the sole policy decision makers in full meaning any longer. Meanwhile, a special role, namely steering the decision making process, could be delegated to them. Despite the wide scientific discussion on different aspects what has direct impact on policy creation, there is a lack of holistic practical managerial advice, which could integrate infrastructure of policy decision making with intellectual capital and with interconnection of partnership. The proposed harmonized decision making model of process, people and partnership entitled by acronym HM-3P is analyzed as a framework for implementation of public administration steering role seeking the coherent social involvement in policy decision making.

A Practical Solution of a Plant Pipes Monitoring System Using Bio-mimetic Robots

There has been a growing interest in the field of bio-mimetic robots that resemble the shape of an insect or an aquatic animal, among many others. One bio-mimetic robot serves the purpose of exploring pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. In order to move effectively inside a pipeline, the robot-s movement will resemble that of a lizard. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependant on periodical offline monitoring. This paper provides the Monitoring System that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.

Heat Transfer Coefficients for Particulate Airflow in Shell and Coiled Tube Heat Exchangers

In this work, we experimentally study heat transfer from exhaust particulate air of detergent spray drying tower to water by using coiled tube heat exchanger. Water flows in the coiled tubes, where air loaded with detergent particles of 43 micrometers in diameter flows within the shell. Four coiled tubes with different coil pitches are used in a counter-current flow configuration. We investigate heat transfer coefficients of inside and outside the heat transfer surfaces through 400 experiments. The correlations between Nusselt number and Reynolds number, Prandtl number, mass flow rate of particulates to mass flow rate of air ratio and coiled tube pitch parameter are proposed. The correlations procured can be used to predicted heat transfer between tube and shell of the heat exchanger.

On the Exact Solution of Non-Uniform Torsion for Beams with Axial Symmetric Cross-Section

In the traditional theory of non-uniform torsion the axial displacement field is expressed as the product of the unit twist angle and the warping function. The first one, variable along the beam axis, is obtained by a global congruence condition; the second one, instead, defined over the cross-section, is determined by solving a Neumann problem associated to the Laplace equation, as well as for the uniform torsion problem. So, as in the classical theory the warping function doesn-t punctually satisfy the first indefinite equilibrium equation, the principal aim of this work is to develop a new theory for non-uniform torsion of beams with axial symmetric cross-section, fully restrained on both ends and loaded by a constant torque, that permits to punctually satisfy the previous equation, by means of a trigonometric expansion of the axial displacement and unit twist angle functions. Furthermore, as the classical theory is generally applied with good results to the global and local analysis of ship structures, two beams having the first one an open profile, the second one a closed section, have been analyzed, in order to compare the two theories.

A Discrete Choice Modeling Approach to Modular Systems Design

The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.

Effect of Cassava Root Ensiled with Cassava Top or Legumes on Feed Intake and Digestibility of Dairy Cows

The effect of cassava root ensiled with cassava top or legumes on voluntary feed intake and milk production were determined in 12 dairy cows using a 4×3 change-over design. Experimental period were 30 days long and consisted of 14 days of adaptation. Silage was prepared from cassava root mixed with cassava top or legumes at ratio 60:40. Cows were allotted at random to receive ad libitum one of four rations: T1) control, T2) cassava root +cassava top-silages, T3) cassava root +hamata - silages and T4) cassava root +Thapra stylo-silages. The dry matter intake (BW0.75) was higher (P< 0.05) in cow fed with silages diets compared with T1. However, the intake of T2 was higher among treatments. Milk production was lowest in cow fed with T1. Among silages based diets, milk production was not significantly different but 4%FCM was higher in cow fed T2. Milk compositions were not affected by feeding diets. It is concluded that feeding cassava root ensiled with its leaves as a supplement increased dry matter intake and significantly improved 4%FCM. The combination of cassava root and legume silages did not improve the feed intake but did increase the milk production.

Poverty Alleviation Potential of Snail Farming in Ondo State, Southwest Nigeria

The recurring decimal of rural and urban poverty in Nigeria, resulting from lack of sustainable livelihood activities by the people due to non-diversification of the economy, necessitated this study. One hundred snail farmers were randomly selected in Akure North and Akure South Local Government areas of Ondo State, Southwest Nigeria where snail farming is widely practised. Data collection was through questionnaires administration and onsite observation of farms. Data obtained were subjected to descriptive statistics, Student-s t-test and regression analysis. Cost benefit ratio (CBR) and rate of return on investment (RORI) were calculated in order to determine the poverty alleviation potentials of snail farming in the study areas. Although snail farming was profitable and viable, it was below poverty line. With time and more knowledge in its farming activities, and with more people taking to snail production, its poverty alleviation and reduction potentials will increase.

Prediction of Post Underwater Shock Properties of Polymer - Clay/Silica Hybrid Nanocomposites through Regression Models

Exploding concentrated underwater charges to damage underwater structures such as ship hulls is a part of naval warfare strategies. Adding small amounts of foreign particles (like clay or silica) of nanosize significantly improves the engineering properties of the polymers. In the present work the clay in terms 1, 2 and 3 percent by weight was surface treated with a suitable silane agent. The hybrid nanocomposite was prepared by the hand lay-up technique. Mathematical regression models have been employed for theoretical prediction. This will result in considerable savings in terms of project time, effort and cost.

Lagrangian Geometrical Model of the Rheonomic Mechanical Systems

In this paper we study the rheonomic mechanical systems from the point of view of Lagrange geometry, by means of its canonical semispray. We present an example of the constraint motion of a material point, in the rheonomic case.

Knowledge Mining in Web-based Learning Environments

The state of the art in instructional design for computer-assisted learning has been strongly influenced by advances in information technology, Internet and Web-based systems. The emphasis of educational systems has shifted from training to learning. The course delivered has also been changed from large inflexible content to sequential small chunks of learning objects. The concepts of learning objects together with the advanced technologies of Web and communications support the reusability, interoperability, and accessibility design criteria currently exploited by most learning systems. These concepts enable just-in-time learning. We propose to extend theses design criteria further to include the learnability concept that will help adapting content to the needs of learners. The learnability concept offers a better personalization leading to the creation and delivery of course content more appropriate to performance and interest of each learner. In this paper we present a new framework of learning environments containing knowledge discovery as a tool to automatically learn patterns of learning behavior from learners' profiles and history.

Solution of Optimal Reactive Power Flow using Biogeography-Based Optimization

Optimal reactive power flow is an optimization problem with one or more objective of minimizing the active power losses for fixed generation schedule. The control variables are generator bus voltages, transformer tap settings and reactive power output of the compensating devices placed on different bus bars. Biogeography- Based Optimization (BBO) technique has been applied to solve different kinds of optimal reactive power flow problems subject to operational constraints like power balance constraint, line flow and bus voltages limits etc. BBO searches for the global optimum mainly through two steps: Migration and Mutation. In the present work, BBO has been applied to solve the optimal reactive power flow problems on IEEE 30-bus and standard IEEE 57-bus power systems for minimization of active power loss. The superiority of the proposed method has been demonstrated. Considering the quality of the solution obtained, the proposed method seems to be a promising one for solving these problems.

A Study of Gaps in CBMIR Using Different Methods and Prospective

In recent years, rapid advances in software and hardware in the field of information technology along with a digital imaging revolution in the medical domain facilitate the generation and storage of large collections of images by hospitals and clinics. To search these large image collections effectively and efficiently poses significant technical challenges, and it raises the necessity of constructing intelligent retrieval systems. Content-based Image Retrieval (CBIR) consists of retrieving the most visually similar images to a given query image from a database of images[5]. Medical CBIR (content-based image retrieval) applications pose unique challenges but at the same time offer many new opportunities. On one hand, while one can easily understand news or sports videos, a medical image is often completely incomprehensible to untrained eyes.

An Efficient Technique for EMI Mitigation in Fluorescent Lamps using Frequency Modulation and Evolutionary Programming

Electromagnetic interference (EMI) is one of the serious problems in most electrical and electronic appliances including fluorescent lamps. The electronic ballast used to regulate the power flow through the lamp is the major cause for EMI. The interference is because of the high frequency switching operation of the ballast. Formerly, some EMI mitigation techniques were in practice, but they were not satisfactory because of the hardware complexity in the circuit design, increased parasitic components and power consumption and so on. The majority of the researchers have their spotlight only on EMI mitigation without considering the other constraints such as cost, effective operation of the equipment etc. In this paper, we propose a technique for EMI mitigation in fluorescent lamps by integrating Frequency Modulation and Evolutionary Programming. By the Frequency Modulation technique, the switching at a single central frequency is extended to a range of frequencies, and so, the power is distributed throughout the range of frequencies leading to EMI mitigation. But in order to meet the operating frequency of the ballast and the operating power of the fluorescent lamps, an optimal modulation index is necessary for Frequency Modulation. The optimal modulation index is determined using Evolutionary Programming. Thereby, the proposed technique mitigates the EMI to a satisfactory level without disturbing the operation of the fluorescent lamp.

Size Controlled Synthesis and Photocatalytic Activity of Anatase TiO2 Hollow Microspheres

Titanium oxide hollow microspheres were synthesized from organic precursor titanium tetraisopropoxide (TTIP) using continuous spray pyrolysis reactor. Effects of precursor concentration, applied voltage and annealing have been investigated. It was observed that the annealing of the as-synthesized TiO2 hollow microspheres at 2500C, which had an average external diameter of 200 nm, leads to an increase in the size and also more spherical shape. The precursor concentration was found to have a direct impact on the size of the microspheres, which is also evident in the absorption spectrum. The as-prepared TiO2 hollow microspheres exhibited good photocatalytic activity for the degradation of MO.

Producing New Composite Materials by Using Tragacanth and Waste Ash

In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conductivity decreases with increasing amount of tragacanth in the mixture. The compressive, tensile strength increases when the rate of tragacanth is up to 1%, whilst as the amount of tragacanth increases up to 1.5%, the compressive, tensile strength decreases slightly. The rate of water absorption of samples was more than 30%. From this result, it is concluded that these materials can not be used as external plaster or internal plaster material that faces to water. They can be used in internal plaster unless touching water and they can be used as cover plaster under roof and riprap material in sandwich panels. It is also found that, these materials can be cut with saw, drilled with screw and painted with any kind of paint.

A Proposed Managerial Framework for International Marketing Operations in the Fast Food Industry

When choosing marketing strategies for international markets, one of the factors that should be considered is the cultural differences that exist among consumers in different countries. If the branding strategy has to be contextual and in tune with the culture, then the brand positioning variables has to interact, adapt and respond to the cultural variables in which the brand is operating. This study provides an overview of the relevance of culture in the development of an effective branding strategy in the international business environment. Hence, the main objective of this study is to provide a managerial framework for developing strategies for cross cultural brand management. The framework is useful because it incorporates the variables that are important in the competitiveness of fast food enterprises irrespective of their size. It provides practical, proactive and result oriented analysis that will help fast food firms augment their strategies in the international fast food markets. The proposed framework will enable managers understand the intricacies involved in branding in the global fast food industry and decrease the use of 'trial and error' when entering into unfamiliar markets.