Temperature-dependent Structural Perturbation of Tuna Myoglobin

To unveil the mechanism of fast autooxidation of fish myoglobins, the effect of temperature on the structural change of tuna myoglobin was investigated. Purified myoglobin was subjected to preincubation at 5, 20, 50 and 40oC. Overall helical structural decay through thermal treatment up to 95oC was monitored by circular dichroism spectrometry, while the structural changes around the heme pocket was measured by ultraviolet/visible absorption spectrophotometry. As a result, no essential structural change of myoglobin was observed under 30oC, roughly equivalent to their body temperature, but the structure was clearly damaged at 40oC. The Soret band absorption hardly differed irrespective of preincubation temperature, suggesting that the structure around the heme pocket was not perturbed even after thermal treatment.

Numerical Analysis on Rapid Decompression in Conventional Dry Gases using One- Dimensional Mathematical Modeling

The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flows in pipes. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales-Eakin (LGE) correlation. Numerical analysis on rapid decompression in conventional dry gases is performed by using the proposed mathematical model. The model is validated on measured values of the decompression wave speed in dry natural gas mixtures. All predictions show excellent agreement with the experimental data at high and low pressure. The presented model predicts the decompression in dry natural gas mixtures much better than GASDECOM and OLGA codes, which are the most frequently-used codes in oil and gas pipeline transport service.

The Effects of Feeding Dried Fermented Cassava Peel on Milk Production and Composition of Etawah Crossedbred Goat

Twelve lactating Etawah Crossedbred goats were used in this study. Goat feed consisted of Cally andra callothyrsus, Pennisetum purpureum, wheat bran and dried fermented cassava peel. The cassava peels were fermented with a traditional culture called “ragi tape" (mixed culture of Saccharomyces cerevisae, Aspergillus sp, Candida, Hasnula and Acetobacter). The goats were divided into 2 groups (Control and Treated) of six does. The experimental diet of the Control group consisted of 70% of roughage (fresh Callyandra callothyrsus and Pennisetum purpureum 60:40) and 30% of wheat bran on dry matter (DM) base. In the Treated group 30% of wheat bran was replaced with dried fermented cassava peels. Data were statistically analyzed using analysis of variance followed SPSS program. The concentration of HCN in fermented cassava peel decreased to non toxic level. Nutrient composition of dried fermented cassava peel consisted of 85.75% dry matter; 5.80% crude protein and 82.51% total digestible nutrien (TDN). Substitution of 30% of wheat bran with dried fermented cassava peel in the diet had no effect on dry matter and organic matter intake but significantly (P< 0.05) decreased crude protein and TDN consumption as well as milk yields and milk composition. The study recommended to reduced the level of substitution to less than 30% of concentrates in the diet in order to avoid low nutrient intake and milk production of goats.

The Impact of Semantic Web on E-Commerce

Semantic Web Technologies enable machines to interpret data published in a machine-interpretable form on the web. At the present time, only human beings are able to understand the product information published online. The emerging semantic Web technologies have the potential to deeply influence the further development of the Internet Economy. In this paper we propose a scenario based research approach to predict the effects of these new technologies on electronic markets and business models of traders and intermediaries and customers. Over 300 million searches are conducted everyday on the Internet by people trying to find what they need. A majority of these searches are in the domain of consumer ecommerce, where a web user is looking for something to buy. This represents a huge cost in terms of people hours and an enormous drain of resources. Agent enabled semantic search will have a dramatic impact on the precision of these searches. It will reduce and possibly eliminate information asymmetry where a better informed buyer gets the best value. By impacting this key determinant of market prices semantic web will foster the evolution of different business and economic models. We submit that there is a need for developing these futuristic models based on our current understanding of e-commerce models and nascent semantic web technologies. We believe these business models will encourage mainstream web developers and businesses to join the “semantic web revolution."

Natural Radioactivity Measurements of Basalt Rocks in Sidakan District Northeastern of Kurdistan Region-Iraq

The amounts of radioactivity in the igneous rocks have been investigated; samples were collected from the total of eight basalt rock types in the northeastern of Kurdistan region/Iraq. The activity concentration of 226Ra (238U) series, 228Ac (232Th) series, 40K and 137Cs were measured using Planar HPGe and NaI(Tl) detectors. Along the study area the radium equivalent activities Raeq in Bq/Kg of samples under investigation were found in the range of 22.16 to 77.31 Bq/Kg with an average value of 44.8 Bq/Kg, this value is much below the internationally accepted value of 370 Bq/Kg. To estimate the health effects of this natural radioactive composition, the average values of absorbed gamma dose rate D (55 nGyh-1), Indoor and outdoor annual effective dose rates Eied (0.11 mSvy-1) . and Eoed (0.03 mSvy-1), External hazard index Hex (0.138) and internal hazard index Hin(0.154), and representative level index Iγr (0.386) have been calculated and found to be lower than the worldwide average values.

Disinfection of Water by Adsorption with Electrochemical Regeneration

Arvia®, a spin-out company of University of Manchester, UK is commercialising a water treatment technology for the removal of low concentrations of organics from water. This technology is based on the adsorption of organics onto graphite based adsorbents coupled with their electrochemical regeneration in a simple electrochemical cell. In this paper, the potential of the process to adsorb microorganisms and electrochemically disinfect them present in water has been demonstrated. Bench scale experiments have indicated that the process of adsorption using graphite adsorbents with electrochemical regeneration can be used for water disinfection effectively. The most likely mechanisms of disinfection of water through this process include direct electrochemical oxidation and electrochemical chlorination.

Conceptual Overview of Housing Affordability in Selangor, Malaysia

Socioeconomic stability and development of a country, can be describe by housing affordability. It is aimed to ensure the housing provided as one of the key factors that is affordable by every income earner group whether low-income, middle income and high income group. This research carried out is to find out affordability of home ownership level for first medium cost landed-house by the middle-income group in Selangor, Malaysia. It is also hope that it could be seen as able to contribute to the knowledge and understanding on housing affordability level for the middleincome group and variables that influenced the medium income group-s ability to own first medium-cost houses.

Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology

According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.

Analysis of DNA-Recognizing Enzyme Interaction using Deaminated Lesions

Deaminated lesions were produced via nitrosative oxidation of natural nucleobases; uracul (Ura, U) from cytosine (Cyt, C), hypoxanthine (Hyp, H) from adenine (Ade, A), and xanthine (Xan, X) and oxanine (Oxa, O) from guanine (Gua, G). Such damaged nucleobases may induce mutagenic problems, so that much attentions and efforts have been poured on the revealing of their mechanisms in vivo or in vitro. In this study, we employed these deaminated lesions as useful probes for analysis of DNA-binding/recognizing proteins or enzymes. Since the pyrimidine lesions such as Hyp, Oxa and Xan are employed as analogues of guanine, their comparative uses are informative for analyzing the role of Gua in DNA sequence in DNA-protein interaction. Several DNA oligomers containing such Hyp, Oxa or Xan substituted for Gua were designed to reveal the molecular interaction between DNA and protein. From this approach, we have got useful information to understand the molecular mechanisms of the DNA-recognizing enzymes, which have not ever been observed using conventional DNA oligomer composed of just natural nucleobases.

Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC

Many accidents were happened because of fast driving, habitual working overtime or tired spirit. This paper presents a solution of remote warning for vehicles collision avoidance using vehicular communication. The development system integrates dedicated short range communication (DSRC) and global position system (GPS) with embedded system into a powerful remote warning system. To transmit the vehicular information and broadcast vehicle position; DSRC communication technology is adopt as the bridge. The proposed system is divided into two parts of the positioning andvehicular units in a vehicle. The positioning unit is used to provide the position and heading information from GPS module, and furthermore the vehicular unit is used to receive the break, throttle, and othersignals via controller area network (CAN) interface connected to each mechanism. The mobile hardware are built with an embedded system using X86 processor in Linux system. A vehicle is communicated with other vehicles via DSRC in non-addressed protocol with wireless access in vehicular environments (WAVE) short message protocol. From the position data and vehicular information, this paper provided a conflict detection algorithm to do time separation and remote warning with error bubble consideration. And the warning information is on-line displayed in the screen. This system is able to enhance driver assistance service and realize critical safety by using vehicular information from the neighbor vehicles.KeywordsDedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Regional Stability Analysis of Rotor-Ball Bearing and Rotor- Roller Bearing Systems Considering Switching Phenomena

In this study the regional stability of a rotor system which is supported on rolling bearings with radial clearance is studied. The rotor is assumed to be rigid. Due to radial clearance of bearings and dynamic configuration of system, each rolling elements of bearings has the possibility to be in contact with both of the races (under compression) or lose its contact. As a result, this change in dynamic of the system makes it to be known as switching system which is a type of Hybrid systems. In this investigation by adopting Multiple Lyapunov Function theorem and using Hamiltonian function as a candidate Lyapunov function, the stability of the system is studied. The purpose of this study is to inspect the regional stability of rotor-roller bearing and rotor-ball bearing systems.

Acceptance and Commitment Therapy for Work Stress: Variation in Perceived Group Process and Outcomes

Employees commonly encounter unpredictable and unavoidable work related stressors. Exposure to such stressors can evoke negative appraisals and associated adverse mental, physical, and behavioral responses. Because Acceptance and Commitment Therapy (ACT) emphasizes acceptance of unavoidable stressors and diffusion from negative appraisals, it may be particularly beneficial for work stress. Forty-five workers were randomly assigned to an ACT intervention for work stress (n = 21) or a waitlist control group (n = 24). The intervention consisted of two 3-hour sessions spaced one week apart. An examination of group process and outcomes was conducted using the Revised Sessions Rating Scale. Results indicated that the ACT participants reported that they perceived the intervention to be supportive, task focused, and without adverse therapist behaviors (e.g., feelings of being criticized or discounted). Additionally, the second session (values clarification and commitment to action) was perceived to be more supportive and task focused than the first session (mindfulness, defusion). Process ratings were correlated with outcomes. Results indicated that perceptions of therapy supportiveness and task focus were associated with reduced psychological distress and improved perceived physical health.

A Pattern Language for Software Debugging

In spite of all advancement in software testing, debugging remains a labor-intensive, manual, time consuming, and error prone process. A candidate solution to enhance debugging process is to fuse it with testing process. To achieve this integration, a possible solution may be categorizing common software tests and errors followed by the effort on fixing the errors through general solutions for each test/error pair. Our approach to address this issue is based on Christopher Alexander-s pattern and pattern language concepts. The patterns in this language are grouped into three major sections and connect the three concepts of test, error, and debug. These patterns and their hierarchical relationship shape a pattern language that introduces a solution to solve software errors in a known testing context. Finally, we will introduce our developed framework ADE as a sample implementation to support a pattern of proposed language, which aims to automate the whole process of evolving software design via evolutionary methods.

Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game

The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.

Three-Dimensional Simulation of Free Electron Laser with Prebunching and Efficiency Enhancement

Three-dimensional simulation of harmonic up generation in free electron laser amplifier operating simultaneously with a cold and relativistic electron beam is presented in steady-state regime where the slippage of the electromagnetic wave with respect to the electron beam is ignored. By using slowly varying envelope approximation and applying the source-dependent expansion to wave equations, electromagnetic fields are represented in terms of the Hermit Gaussian modes which are well suited for the planar wiggler configuration. The electron dynamics is described by the fully threedimensional Lorentz force equation in presence of the realistic planar magnetostatic wiggler and electromagnetic fields. A set of coupled nonlinear first-order differential equations is derived and solved numerically. The fundamental and third harmonic radiation of the beam is considered. In addition to uniform beam, prebunched electron beam has also been studied. For this effect of sinusoidal distribution of entry times for the electron beam on the evolution of radiation is compared with uniform distribution. It is shown that prebunching reduces the saturation length substantially. For efficiency enhancement the wiggler is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of radiation in the amplitude of wiggler are found by successive run of the code.

The Effect of Silicon on Cadmium Stress in Echium amoenum

The beneficial effects of Si are mainly associated with its high deposition in plant tissue and enhancing their strength and rigidity. We investigated the role of Si against cadmium stress in (Echium C) in house green condition. When the seventh leaves was be appeared, plants were pretreated with five levels of Si: 0, 0.2, 0.5, 0.7and 1.5 mM Si (as sodium trisilicate, Na2(SiO2)3) and after that plants were treated with two levels of Cd (30 and 90 mM). The effects of Silicon and Cd were investigated on some physiological and biochemical parameters such as: lipid peroxidation (malondialdehyde (MDA) and other aldehydes, antocyanin and flavonoid content. Our results showed that Cd significantly increased MDA, other aldehydes, antocyanin and flavonoids content in Echium and silicon offset the negative effect and increased tolerance of Echium against Cd stress. From this results we concluded that Si increase membrane integrity and antioxidative ability in this plant against cd stress.

Estimation of Individual Power of Noise Sources Operating Simultaneously

Noise has adverse effect on human health and comfort. Noise not only cause hearing impairment, but it also acts as a causal factor for stress and raising systolic pressure. Additionally it can be a causal factor in work accidents, both by marking hazards and warning signals and by impeding concentration. Industry workers also suffer psychological and physical stress as well as hearing loss due to industrial noise. This paper proposes an approach to enable engineers to point out quantitatively the noisiest source for modification, while multiple machines are operating simultaneously. The model with the point source and spherical radiation in a free field was adopted to formulate the problem. The procedure works very well in ideal cases (point source and free field). However, most of the industrial noise problems are complicated by the fact that the noise is confined in a room. Reflections from the walls, floor, ceiling, and equipment in a room create a reverberant sound field that alters the sound wave characteristics from those for the free field. So the model was validated for relatively low absorption room at NIT Kurukshetra Central Workshop. The results of validation pointed out that the estimated sound power of noise sources under simultaneous conditions were on lower side, within the error limits 3.56 - 6.35 %. Thus suggesting the use of this methodology for practical implementation in industry. To demonstrate the application of the above analytical procedure for estimating the sound power of noise sources under simultaneous operating conditions, a manufacturing facility (Railway Workshop at Yamunanagar, India) having five sound sources (machines) on its workshop floor is considered in this study. The findings of the case study had identified the two most effective candidates (noise sources) for noise control in the Railway Workshop Yamunanagar, India. The study suggests that the modification in the design and/or replacement of these two identified noisiest sources (machine) would be necessary so as to achieve an effective reduction in noise levels. Further, the estimated data allows engineers to better understand the noise situations of the workplace and to revise the map when changes occur in noise level due to a workplace re-layout.

On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm

This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.

Kinetic model and Simulation Analysis for Propane Dehydrogenation in an Industrial Moving Bed Reactor

A kinetic model for propane dehydrogenation in an industrial moving bed reactor is developed based on the reported reaction scheme. The kinetic parameters and activity constant are fine tuned with several sets of balanced plant data. Plant data at different operating conditions is applied to validate the model and the results show a good agreement between the model predictions and plant observations in terms of the amount of main product, propylene produced. The simulation analysis of key variables such as inlet temperature of each reactor (Tinrx) and hydrogen to total hydrocarbon ratio (H2/THC) affecting process performance is performed to identify the operating condition to maximize the production of propylene. Within the range of operating conditions applied in the present studies, the operating condition to maximize the propylene production at the same weighted average inlet temperature (WAIT) is ΔTinrx1= -2, ΔTinrx2= +1, ΔTinrx3= +1 , ΔTinrx4= +2 and ΔH2/THC= -0.02. Under this condition, the surplus propylene produced is 7.07 tons/day as compared with base case.

Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate

In the present paper, a numerical investigation has been carried out to classify and clarify the effects of paramount parameters on turbulent impinging slot jets. The effects of nozzle-s exit turbulent intensity, distance between nozzle and impinging plate are studied at Reynolds number 5000 and 20000. In addition, the effect of Mach number that is varied between 0.3-0.8 at a constant Reynolds number 133000 is investigated to elucidate the effect of compressibility in impinging jet upon a flat plate. The wall that is located at the same level with nozzle-s exit confines the flow. A compressible finite volume solver is implemented for simulation the flow behavior. One equation Spalart-Allmaras turbulent model is used to simulate turbulent flow at this study. Assessment of the Spalart-Allmaras turbulent model at high nozzle to plate distance, and giving enough insights to characterize the effect of Mach number at high Reynolds number for the complex impinging jet flow are the remarkable results of this study.