A New Image Encryption Approach using Combinational Permutation Techniques

This paper proposes a new approach for image encryption using a combination of different permutation techniques. The main idea behind the present work is that an image can be viewed as an arrangement of bits, pixels and blocks. The intelligible information present in an image is due to the correlations among the bits, pixels and blocks in a given arrangement. This perceivable information can be reduced by decreasing the correlation among the bits, pixels and blocks using certain permutation techniques. This paper presents an approach for a random combination of the aforementioned permutations for image encryption. From the results, it is observed that the permutation of bits is effective in significantly reducing the correlation thereby decreasing the perceptual information, whereas the permutation of pixels and blocks are good at producing higher level security compared to bit permutation. A random combination method employing all the three techniques thus is observed to be useful for tactical security applications, where protection is needed only against a casual observer.

Rigid and Non-rigid Registration of Binary Objects using the Weighted Ratio Image

This paper presents the application of a signal intensity independent similarity criterion for rigid and non-rigid body registration of binary objects. The criterion is defined as the weighted ratio image of two images. The ratio is computed on a voxel per voxel basis and weighting is performed by setting the raios between signal and background voxels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the signal areas of the two images and it is minimized using the Chebyshev polynomial approximation.

Modeling and Investigation of Volume Strain at Large Deformation under Uniaxial Cyclic Loading in Semi Crystalline Polymer

This study deals with the experimental investigation and theoretical modeling of Semi crystalline polymeric materials with a rubbery amorphous phase (HDPE) subjected to a uniaxial cyclic tests with various maximum strain levels, even at large deformation. Each cycle is loaded in tension up to certain maximum strain and then unloaded down to zero stress with N number of cycles. This work is focuses on the measure of the volume strain due to the phenomena of damage during this kind of tests. On the basis of thermodynamics of relaxation processes, a constitutive model for large strain deformation has been developed, taking into account the damage effect, to predict the complex elasto-viscoelastic-viscoplastic behavior of material. A direct comparison between the model predictions and the experimental data show that the model accurately captures the material response. The model is also capable of predicting the influence damage causing volume variation.

The Effect of Buckwheat (Fagopyrum esculentum Moench) Groats Addition to the Lard Diet on Antioxidant Parameters of Plasma and Selected Tissues in Wistar Rats

Recent studies demonstrated that high-fat diet increases oxidative stress in plasma and in a variety of tissues. Many researchers have been looking for natural products, which can reverse the effect of high fat diet. Recently, buckwheat is becoming common ingredient in functional food because of it properties. In study on buckwheat, it is known that, this plant plays roles as anti-oxidative, anti-inflammatory and anti-hypertensive. Nevertheless still little is known about buckwheat groats. The aim of this study was to investigate the effects of addition of buckwheat groats to the fat diet (30% lard), on some antioxidant and oxidant stress parameters in plasma and selected tissues in Wistar rats. The experiment was carried out with three months old male Wistar rats ca. 250g of body weight fed for 5 weeks with either a high-fat (30% of lard) diet or control diet, with or without addition of buckwheat groats. In plasma biochemistry and the activities of the antioxidant enzymes were measured selected tissues: glutathione peroxidase (GPX), catalase (CAT) and the levels of total and reduced glutathione (GSH), free thiol groups (pSH), antioxidant potential of plasma (FRAP) and oxidant stress indices - proteins carbonyl groups (CO) and malonyldialdehyde concentration (MDA). Activity of catalase (CAT) in plasma of rats was significantly increased in buckwheat groats groups and activity of GPx3 in plasma of rats was decreased in buckwheat groups as compared to control group. The reduced glutathione (GSH) in plasma of rats was significantly increased and protein CO was significantly decreased in buckwheat groups as compared to controls. The lowered concentration of GSH was found in serum of rats fed buckwheat groats addition but it accompanied in 7-fold increase in reduced-to-oxidized glutatione ratio, significant increase in HDL and decrease in nonHDL concentration. Conclusions: Buckwheat groats indicate a beneficial effect in inhibiting protein and lipid peroxidation in rats and improved lipid profile. These results suggest that buckwheat groats exert a significant antioxidant potential and may be used as normal food constituent to ameliorate the oxidant-induced damage in organism. 

Hotel Design and Energy Consumption

A hotel mainly uses its energy on water heating, space heating, refrigeration, space cooling, cooking, lighting and other building services. A number of 4-5 stars hotels in Auckland city are selected for this study. Comparing with the energy used for others, the energy used for the internal space thermal control (e.g. internal space heating) is more closely related to the hotel building itself. This study not only investigates relationship between annual energy (and winter energy) consumptions and building design data but also relationships between winter extra energy consumption and building design data. This study is to identify the major design factors that significantly impact hotel energy consumption for improving the future hotel design for energy efficient.

Removal of Basic Blue 3 from Aqueous Solution by Adsorption Onto Durio Ziberthinus

Durian husk (DH), a fruit waste, was studied for its ability to remove Basic blue 3 (BB3) from aqueous solutions. Batch kinetic studies were carried out to study the sorption characteristics under various experimental conditions. The optimum pH for the dye removal occurred in the pH range of 3-10. Sorption was found to be concentration and agitation dependent. The kinetics of dye sorption fitted a pseudo-second order rate expression. Both Langmuir and Freundlich models appeared to provide reasonable fittings for the sorption data of BB3 on durian husk. Maximum sorption capacity calculated from the Langmuir model is 49.50 mg g-1.

Justification and Classification of Issues for the Selection and Implementation of Advanced Manufacturing Technologies

It has often been said that the strength of any country resides in the strength of its industrial sector, and Progress in industrial society has been accomplished by the creation of new technologies. Developments have been facilitated by the increasing availability of advanced manufacturing technology (AMT), in addition the implementation of advanced manufacturing technology (AMT) requires careful planning at all levels of the organization to ensure that the implementation will achieve the intended goals. Justification and implementation of advanced manufacturing technology (AMT) involves decisions that are crucial for the practitioners regarding the survival of business in the present days of uncertain manufacturing world. This paper assists the industrial managers to consider all the important criteria for success AMT implementation, when purchasing new technology. Concurrently, this paper classifies the tangible benefits of a technology that are evaluated by addressing both cost and time dimensions, and the intangible benefits are evaluated by addressing technological, strategic, social and human issues to identify and create awareness of the essential elements in the AMT implementation process and identify the necessary actions before implementing AMT.

Methods for Analyzing the Energy Efficiencyand Cost Effectiveness of Evaporative Cooling Air Conditioning

Air conditioning systems of houses consume large quantity of electricity. To reducing energy consumption for air conditioning purposes it is becoming attractive the use of evaporative cooling air conditioning which is less energy consuming compared to air chillers. But, it is obvious that higher energy efficiency of evaporative cooling is not enough to judge whether evaporative cooling economically is competitive with other types of cooling systems. To proving the higher energy efficiency and cost effectiveness of the evaporative cooling competitive analysis of various types of cooling system should be accomplished. For noted purpose optimization mathematical model for each system should be composed based on system approach analysis. In this paper different types of evaporative cooling-heating systems are discussed and methods for increasing their energy efficiency and as well as determining of their design parameters are developed. The optimization mathematical models for each of them are composed with help of which least specific costs for each of them are reviled. The comparison of specific costs proved that the most efficient and cost effective is considered the “direct evaporating" system if it is applicable for given climatic conditions. Next more universal and applicable for many climatic conditions system providing least cost of heating and cooling is considered the “direct evaporating" system.

Modeling Strategy and Numerical Validation of the Turbulent Flow over a two-Dimensional Flat Roof

The construction of a civil structure inside a urban area inevitably modifies the outdoor microclimate at the building site. Wind speed, wind direction, air pollution, driving rain, radiation and daylight are some of the main physical aspects that are subjected to the major changes. The quantitative amount of these modifications depends on the shape, size and orientation of the building and on its interaction with the surrounding environment.The flow field over a flat roof model building has been numerically investigated in order to determine two-dimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data.Several turbulence models and spatial node distributions have been tested for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions.The proposed calculations have allowed the development of a preliminary procedure to be used as a guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a twodimensional roof architecture dominated by flow separation.

Speed Sensorless Control with a Linearizationby State Feedback of Asynchronous Machine Using a Model Reference Adaptive System

In this paper, we show that the association of the PI regulators for the speed and stator currents with a control strategy using the linearization by state feedback for an induction machine without speed sensor, and with an adaptation of the rotor resistance. The rotor speed is estimated by using the model reference adaptive system approach (MRAS). This method consists of using two models: The first is the reference model and the second is an adjustable one in which two components of the stator flux, obtained from the measurement of the currents and stator voltages are estimated. The estimated rotor speed is then obtained by canceling the difference between stator-flux of the reference model and those of the adjustable one. Satisfactory results of simulation are obtained and discussed in this paper to highlight the proposed approach.

Evaluation of Risk Attributes Driven by Periodically Changing System Functionality

Modeling of the distributed systems allows us to represent the whole its functionality. The working system instance rarely fulfils the whole functionality represented by model; usually some parts of this functionality should be accessible periodically. The reporting system based on the Data Warehouse concept seams to be an intuitive example of the system that some of its functionality is required only from time to time. Analyzing an enterprise risk associated with the periodical change of the system functionality, we should consider not only the inaccessibility of the components (object) but also their functions (methods), and the impact of such a situation on the system functionality from the business point of view. In the paper we suggest that the risk attributes should be estimated from risk attributes specified at the requirements level (Use Case in the UML model) on the base of the information about the structure of the model (presented at other levels of the UML model). We argue that it is desirable to consider the influence of periodical changes in requirements on the enterprise risk estimation. Finally, the proposition of such a solution basing on the UML system model is presented.

Application of 0-1 Fuzzy Programming in Optimum Project Selection

In this article, a mathematical programming model for choosing an optimum portfolio of investments is developed. The investments are considered as investment projects. The uncertainties of the real world are associated through fuzzy concepts for coefficients of the proposed model (i. e. initial investment costs, profits, resource requirement, and total available budget). Model has been coded by using LINGO 11.0 solver. The results of a full analysis of optimistic and pessimistic derivative models are promising for selecting an optimum portfolio of projects in presence of uncertainty.

Optimizing of Fuzzy C-Means Clustering Algorithm Using GA

Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.

A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems

Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.

Finite Element and Subspace Identification Approaches to Model Development of a Smart Acoustic Box with Experimental Verification

Two approaches for model development of a smart acoustic box are suggested in this paper: the finite element (FE) approach and the subspace identification. Both approaches result in a state-space model, which can be used for obtaining the frequency responses and for the controller design. In order to validate the developed FE model and to perform the subspace identification, an experimental set-up with the acoustic box and dSPACE system was used. Experimentally obtained frequency responses show good agreement with the frequency responses obtained from the FE model and from the identified model.

Mobile Velocity Based Bidirectional Call Overflow Scheme in Hierarchical Cellular System

In the age of global communications, heterogeneous networks are seen to be the best choice of strategy to ensure continuous and uninterruptible services. This will allow mobile terminal to stay in connection even they are migrating into different segment coverage through the handoff process. With the increase of teletraffic demands in mobile cellular system, hierarchical cellular systems have been adopted extensively for more efficient channel utilization and better QoS (Quality of Service). This paper presents a bidirectional call overflow scheme between two layers of microcells and macrocells, where handoffs are decided by the velocity of mobile making the call. To ensure that handoff calls are given higher priorities, it is assumed that guard channels are assigned in both macrocells and microcells. A hysteresis value introduced in mobile velocity is used to allow mobile roam in the same cell if its velocity changes back within the set threshold values. By doing this the number of handoffs is reduced thereby reducing the processing overhead and enhancing the quality of service to the end user.

Development of Autonomous Cable Inspection Robot for Nuclear Power Plant

The cables in a nuclear power plant are designed to be used for about 40 years in safe operation environment. However, the heat and radiation in the nuclear power plant causes the rapid performance deterioration of cables in nuclear vessels and heat exchangers, which requires cable lifetime estimation. The most accurate method of estimating the cable lifetime is to evaluate the cables in a laboratory. However, removing cables while the plant is operating is not allowed because of its safety and cost. In this paper, a robot system to estimate the cable lifetime in nuclear power plants is developed and tested. The developed robot system can calculate a modulus value to estimate the cable lifetime even when the nuclear power plant is in operation.

Numerical Simulation of Interfacial Flow with Volume-Of-Fluid Method

In this article, various models of surface tension force (CSF, CSS and PCIL) for interfacial flows have been applied to dynamic case and the results were compared. We studied the Kelvin- Helmholtz instabilities, which are produced by shear at the interface between two fluids with different physical properties. The velocity inlet is defined as a sinusoidal perturbation. When gravity and surface tension are taking into account, we observe the development of the Instability for a critic value of the difference of velocity of the both fluids. The VOF Model enables to simulate Kelvin-Helmholtz Instability as dynamic case.

On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models

Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.

MJPEG Real-Time Transmission in Industrial Environments Using a CBR Channel

Currently, there are many local area industrial networks that can give guaranteed bandwidth to synchronous traffic, particularly providing CBR channels (Constant Bit Rate), which allow improved bandwidth management. Some of such networks operate over Ethernet, delivering channels with enough capacity, specially with compressors, to integrate multimedia traffic in industrial monitoring and image processing applications with many sources. In these industrial environments where a low latency is an essential requirement, JPEG is an adequate compressing technique but it generates VBR traffic (Variable Bit Rate). Transmitting VBR traffic in CBR channels is inefficient and current solutions to this problem significantly increase the latency or further degrade the quality. In this paper an R(q) model is used which allows on-line calculation of the JPEG quantification factor. We obtained increased quality, a lower requirement for the CBR channel with reduced number of discarded frames along with better use of the channel bandwidth.