Ultrasonic Intensification of the Chemical Degradation of Methyl Violet: An Experimental Study

The sonochemical decolorization and degradation of azo dye Methyl violet using Fenton-s reagent in the presence of a high-frequency acoustic field has been investigated. Dyeing and textile effluents are the major sources of azo dyes, and are most troublesome among industrial wastewaters, causing imbalance in the eco-system. The effect of various operating conditions (initial concentration of dye, liquid-phase temperature, ultrasonic power and frequency and process time) on sonochemical degradation was investigated. Conversion was found to increase with increase in initial concentration, temperature, power level and frequency. Both horntype and tank-type sonicators were used, at various power levels (250W, 400W and 500W) for frequencies ranging from 20 kHz - 1000 kHz. A 'Process Intensification' parameter PI, was defined to quantify the enhancement of the degradation reaction by ultrasound when compared to control (i.e., without ultrasound). The present work clearly demonstrates that a high-frequency ultrasonic bath can be used to achieve higher process throughput and energy efficiency at a larger scale of operation.

Comparing the Quality of Service of Bus Companies Operating in two Cities in Brazil

The main objective of this work is to compare the quality of service of the bus companies operating in the city of Rio Branco, located in the state of Acre with the quality of service of the bus companies operating in the city of Campos, situated in the state of Rio de Janeiro, both cities in Brazil. This comparison, based on the opinion of the bus users, will determine their degree of satisfaction with the service available in both cities. The outcome of this evaluation shows the users unhappy with the quality of the service provided by the bus companies operating in both cities and the need to identify alternative solutions that may minimize the consequences caused by the main problems detected in this work. With these alternatives available, the bus companies will be able to better understand the needs of their customers in terms of manpower, service cost, time schedule, etc.

Iris Recognition Based On the Low Order Norms of Gradient Components

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Load Discontinuity in Shock Response and Its Remedies

It has been shown that a load discontinuity at the end of an impulse will result in an extra impulse and hence an extra amplitude distortion if a step-by-step integration method is employed to yield the shock response. In order to overcome this difficulty, three remedies are proposed to reduce the extra amplitude distortion. The first remedy is to solve the momentum equation of motion instead of the force equation of motion in the step-by-step solution of the shock response, where an external momentum is used in the solution of the momentum equation of motion. Since the external momentum is a resultant of the time integration of external force, the problem of load discontinuity will automatically disappear. The second remedy is to perform a single small time step immediately upon termination of the applied impulse while the other time steps can still be conducted by using the time step determined from general considerations. This is because that the extra impulse caused by a load discontinuity at the end of an impulse is almost linearly proportional to the step size. Finally, the third remedy is to use the average value of the two different values at the integration point of the load discontinuity to replace the use of one of them for loading input. The basic motivation of this remedy originates from the concept of no loading input error associated with the integration point of load discontinuity. The feasibility of the three remedies are analytically explained and numerically illustrated.

The Impact of Revenue Gap on Economic Growth: A Case Study of Pakistan

This study employs auto-regressive distributed lag (ARDL) bounds approach to cointegration for long run and errorcorrection modeling (ECM) for short run analysis to examine the relationship between revenue gap and economic growth for Pakistan using annual time series data over the period 1980 to 2008. The short and long run results indicate that revenue gap is statistical significant and negatively effect economic growth. The significant and negative coefficient of error correction term in ECM indicates that after a shock, the long rum equilibrium will again converge towards equilibrium about 10.406 percent within a year.

Transient Currents in a Double Conductor Line above a Conducting Half-Space

Transient eddy current problem is solved in the present paper by the method of the Laplace transform for the case of a double conductor line located parallel to a conducting half-space. The Fourier sine and cosine integral transforms are used in order to find the Laplace transform of the solution. The inverse Laplace transform of the solution is found in closed form. The integrated electromotive force per unit length of the double conductor line is calculated in the form of an improper integral.

Modification of the Conventional Power Flow Analysis for the Deployment of an HVDC Grid System in the Indian Subcontinent

The Indian subcontinent is facing a massive challenge with regards to the energy security in member countries, i.e. providing a reliable source of electricity to facilitate development across various sectors of the economy and thereby achieve the developmental targets it has set for itself. A highly precarious situation exists in the subcontinent which is observed in the series of system failures which most of the times leads to system collapses-blackouts. To mitigate the issues related with energy security as well as keep in check the increasing supply demand gap, a possible solution that stands in front of the subcontinent is the deployment of an interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the sub continent as well as provide the infra structure for RES integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on VSC HVDC converters for the Supergrid modeling.

Places of Tourist Attraction: Planning Sustainable Fruition by Preserving Place Identity

Massive use of places with strong tourist attraction with the consequent possibility of losing place-identity produces harmful effects on cities and their users. In order to mitigate this risk, areas close to such places can be identified so as to widen the visitor-s range of action and offer alternative activities integrated with the main site. The cultural places and appropriate activities can be identified using a method of analysis and design able to trace the identity of the places, their characteristics and potential, and to provide a sustainable improvement. The aim of this work is to propose PlaceMaker as a method of urban analysis and design which both detects elements that do not feature in traditional mapping and which constitute the contemporary identity of the places, and identifies appropriate project interventions. Two final complex maps – the first of analysis and the second of design – respectively represent the identity of places and project interventions. In order to illustrate the method-s potential; the results of the experimentation carried out in the Trevi-Pantheon route in Rome and the appropriate interventions to decongest the area are illustrated.

Establishing of Education Strategy in New Technological Environments with using Student Feedback

According to the new developments in the field of information and communication technologies, the necessity arises for active use of these new technologies in education. It is clear that the integration of technology in education system will be different for primary-higher education or traditional- distance education. In this study, the subject of the integration of technology for distance education was discussed. The subject was taken from the viewpoint of students. With using the information of student feedback about education program in which new technological medias are used, how can survey variables can be separated into the factors as positive, negative and supporter and how can be redesigned education strategy of the higher education associations with the examining the variables of each determinated factor is explained. The paper concludes with the recommendations about the necessitity of working as a group of different area experts and using of numerical methods in establishing of education strategy to be successful.

Influence of Sire Breed, Protein Supplementation and Gender on Wool Spinning Fineness in First-Cross Merino Lambs

Our objectives were to evaluate the effects of sire breed, type of protein supplement, level of supplementation and sex on wool spinning fineness (SF), its correlations with other wool characteristics and prediction accuracy in F1 Merino crossbred lambs. Texel, Coopworth, White Suffolk, East Friesian and Dorset rams were mated with 500 purebred Merino dams at a ratio of 1:100 in separate paddocks within a single management system. The F1 progeny were raised on ryegrass pasture until weaning, before forty lambs were randomly allocated to treatments in a 5 x 2 x 2 x 2 factorial experimental design representing 5 sire breeds, 2 supplementary feeds (canola or lupins), 2 levels of supplementation (1% or 2% of liveweight) and sex (wethers or ewes). Lambs were supplemented for six weeks after an initial three weeks of adjustment, wool sampled at the commencement and conclusion of the feeding trial and analyzed for SF, mean fibre diameter (FD), coefficient of variation (CV), standard deviation, comfort factor (CF), fibre curvature (CURV), and clean fleece yield. Data were analyzed using mixed linear model procedures with sire fitted as a random effect, and sire breed, sex, supplementary feed type, level of supplementation and their second-order interactions as fixed effects. Sire breed (P

Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.

Optimum Design of an Absorption Heat Pump Integrated with a Kraft Industry using Genetic Algorithm

In this study the integration of an absorption heat pump (AHP) with the concentration section of an industrial pulp and paper process is investigated using pinch technology. The optimum design of the proposed water-lithium bromide AHP is then achieved by minimizing the total annual cost. A comprehensive optimization is carried out by relaxation of all stream pressure drops as well as heat exchanger areas involving in AHP structure. It is shown that by applying genetic algorithm optimizer, the total annual cost of the proposed AHP is decreased by 18% compared to one resulted from simulation.

A Micro-Watt Second Order Filter for a Chopper Stabilized MEMS Pressure Sensor Interface

This paper describes a low-power second-order filter for a continuous-time chopper stabilized capacitive sensor interface, integrated with a fully differential post-CMOS surface-micromachined MEMS pressure sensor. The circuit uses a single-ended folded-cascode operational amplifier and two GM-C filters connected in cascade. The circuit is realized in a 0.18 μm CMOS process and offers differential to single-ended conversion. The novelty of the scheme is the cascade of two GM-C filters to achieve a second-order filter while minimizing power dissipation. The simulated filter cutoff frequency is 1.14 kHz at common-mode voltage 1.65 V, operating from a 3.3 V supply while dissipating 172μW of power. The filter achieves an operating range of 1V for an output load of 1MOhm and 10pF.

Tax Innovation, Administration and Revenue Generation in Nigeria: Case of Cross River State

Taxation as a potent fiscal policy instrument through which infrastructures and social services that drive the development process of any society has been ineffective in Nigeria. The adoption of appropriate measures is, however, a requirement for the generation of adequate tax revenue. This study set out to investigates efficiency and effectiveness in the administration of tax in Nigeria, using Cross River State as a case-study. The methodology to achieve this objective is a qualitative technique using structured questionnaires to survey the three senatorial districts in the state; the central limit theory is adopted as our analytical technique. Result showed a significant degree of inefficiency in the administration of taxes. It is recommended that periodic review and update of tax policy will bring innovation and effectiveness in the administration of taxes. Also proper appropriation of tax revenue will drive development in needed infrastructural and social services.

Multi Band Frequency Synthesizer Based on ISPD PLL with Adapted LC Tuned VCO

The 4G front-end transceiver needs a high performance which can be obtained mainly with an optimal architecture and a multi-band Local Oscillator. In this study, we proposed and presented a new architecture of multi-band frequency synthesizer based on an Inverse Sine Phase Detector Phase Locked Loop (ISPD PLL) without any filters and any controlled gain block and associated with adapted multi band LC tuned VCO using a several numeric controlled capacitive branches but not binary weighted. The proposed architecture, based on 0.35μm CMOS process technology, supporting Multi-band GSM/DCS/DECT/ UMTS/WiMax application and gives a good performances: a phase noise @1MHz -127dBc and a Factor Of Merit (FOM) @ 1MHz - 186dB and a wide band frequency range (from 0.83GHz to 3.5GHz), that make the proposed architecture amenable for monolithic integration and 4G multi-band application.

Approximations to the Distribution of the Sample Correlation Coefficient

Given a bivariate normal sample of correlated variables, (Xi, Yi), i = 1, . . . , n, an alternative estimator of Pearson’s correlation coefficient is obtained in terms of the ranges, |Xi − Yi|. An approximate confidence interval for ρX,Y is then derived, and a simulation study reveals that the resulting coverage probabilities are in close agreement with the set confidence levels. As well, a new approximant is provided for the density function of R, the sample correlation coefficient. A mixture involving the proposed approximate density of R, denoted by hR(r), and a density function determined from a known approximation due to R. A. Fisher is shown to accurately approximate the distribution of R. Finally, nearly exact density approximants are obtained on adjusting hR(r) by a 7th degree polynomial.

Study of Compaction in Hot-Mix Asphalt Using Computer Simulations

During the process of compaction in Hot-Mix Asphalt (HMA) mixtures, the distance between aggregate particles decreases as they come together and eliminate air-voids. By measuring the inter-particle distances in a cut-section of a HMA sample the degree of compaction can be estimated. For this, a calibration curve is generated by computer simulation technique when the gradation and asphalt content of the HMA mixture are known. A two-dimensional cross section of HMA specimen was simulated using the mixture design information (gradation, asphalt content and air-void content). Nearest neighbor distance methods such as Delaunay triangulation were used to study the changes in inter-particle distance and area distribution during the process of compaction in HMA. Such computer simulations would enable making several hundreds of repetitions in a short period of time without the necessity to compact and analyze laboratory specimens in order to obtain good statistics on the parameters defined. The distributions for the statistical parameters based on computer simulations showed similar trends as those of laboratory specimens.

Fuzzy Cost Support Vector Regression

In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.

Design a Biodegradable Hydrogel for Drug Delivery System

In this article, we synthesize a novel chitosan -based superabsorbent hydrogel via graft copolymerization of mixtures acrylic acid (AA) and N-vinyl pyrollidon onto chitosan backbones. The polymerization reaction was carried out in an aqueous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylene bisacrylamide (MBA) as a crosslinker.The hydrogel structures were confirmed by FTIR spectroscopy. The swelling behavior of these absorbent polymers was also investigated in various salt solutions. Results indicated that the swelling capacity decreased with an increase in the ionic strength of the swelling medium. Furthermore, the swelling of superabsorbing hydrogels was examined in solutions with pH values ranging between 1.0 and 13.0. It showed a reversible pH-responsive behavior at pHs 2.0 and 8.0. This on-off switching behavior makes the synthesized hydrogels as an excellent candidate for controlled delivery of bioactive agents.

The Effect of Entrepreneurship on Foreign Direct Investment

Entrepreneurship has become an important and extensively researched concept in business studies. Research on foreign direct investment (FDI) has become widespread due to the growth of FDI and its importance in globalization. Most entrepreneurship studies examined the importance and influence of entrepreneurial orientation in a micro-level context. On the other hand, studies and research concerning FDI used statistical techniques to analyze the effect, determinants, and motives of FDI on a macroeconomic level, ignoring empirical studies on other noneconomic determinants. In order to bridge the gap between the theory and empirical evidence on FDI and the theory and research on entrepreneurship, this study examines the impact of entrepreneurship on inward foreign direct investment. The relationship between entrepreneurship and foreign direct investment is investigated through regression analysis of pooled time-series and cross-sectional data. The results suggest that entrepreneurship has a significant effect on FDI.