Factors Related to Behaviour Trend of Roasted Coffee Consumers

The purpose of this research was to study the behavior trend factors of consumers to roasted coffee at the petrol station on the route of Rangsit to Nakhon Nayok. The research drew upon data collected from the regular consumers of roasted coffee stands. The majority of respondents was male, 33-39 years old, and holding a bachelor degree. The majority of respondents considered themselves private business proprietors or entrepreneurs and had a monthly income of between 10,000-16,000 baht. The regular coffee consumers spent a minimum coffee expense of between 45 and 300 baht per day. These consumers also displayed good attitude and good motivation which can be ranked as very high. From the hypothesis testing of the behavior trend for the roasted coffee consumers in repurchasing coffee and recommended the coffee to others, the findings revealed that it had a significant correlation. Moreover, the overall attitude towards the marketing mix factors also had a significant correlation with the behavior trend consumers.

Critical Thinking Perspectives on Work Integrated Learning in Information Systems Education

Students with high level skills are in demand, especially in scare skill environments. If universities wish to be successful and competitive, its students need to be adequately equipped with the necessary tools. Work Integrated Learning (WIL) is an essential component of the education of a student. The relevance of higher education should be assessed in terms of how it meets the needs of society and the world of work in a global economy. This paper demonstrates how to use Habermas's theory of communicative action to reflect on students- perceptions on their integration in the work environment to achieve social integration and financial justification. Interpretive questionnaires are used to determine the students- view of how they are integrated into society, and contributing to the economy. This paper explores the use of Habermas-s theory of communicative action to give theoretical and methodological guidance for the practice of social findings obtained in this inquiry.

Modeling of Reusability of Object Oriented Software System

Automatic reusability appraisal is helpful in evaluating the quality of developed or developing reusable software components and in identification of reusable components from existing legacy systems; that can save cost of developing the software from scratch. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. In this research work, structural attributes of software components are explored using software metrics and quality of the software is inferred by different Neural Network based approaches, taking the metric values as input. The calculated reusability value enables to identify a good quality code automatically. It is found that the reusability value determined is close to the manual analysis used to be performed by the programmers or repository managers. So, the developed system can be used to enhance the productivity and quality of software development.

A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering

In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.

QoS Expectations in IP Networks: A Practical View

Traditionally, Internet has provided best-effort service to every user regardless of its requirements. However, as Internet becomes universally available, users demand more bandwidth and applications require more and more resources, and interest has developed in having the Internet provide some degree of Quality of Service. Although QoS is an important issue, the question of how it will be brought into the Internet has not been solved yet. Researches, due to the rapid advances in technology are proposing new and more desirable capabilities for the next generation of IP infrastructures. But neither all applications demand the same amount of resources, nor all users are service providers. In this way, this paper is the first of a series of papers that presents an architecture as a first step to the optimization of QoS in the Internet environment as a solution to a SMSE's problem whose objective is to provide public service to internet with certain Quality of Service expectations. The service provides new business opportunities, but also presents new challenges. We have designed and implemented a scalable service framework that supports adaptive bandwidth based on user demands, and the billing based on usage and on QoS. The developed application has been evaluated and the results show that traffic limiting works at optimum and so it does exceeding bandwidth distribution. However, some considerations are done and currently research is under way in two basic areas: (i) development and testing new transfer protocols, and (ii) developing new strategies for traffic improvements based on service differentiation.

Code-Aided Turbo Channel Estimation for OFDM Systems with NB-LDPC Codes

In this paper channel estimation techniques are considered as the support methods for OFDM transmission systems based on Non Binary LDPC (Low Density Parity Check) codes. Standard frequency domain pilot aided LS (Least Squares) and LMMSE (Linear Minimum Mean Square Error) estimators are investigated. Furthermore, an iterative algorithm is proposed as a solution exploiting the NB-LDPC channel decoder to improve the performance of the LMMSE estimator. Simulation results of signals transmitted through fading mobile channels are presented to compare the performance of the proposed channel estimators.

Ecotourism, Expansion, alongside with Dominant Function of Khark (kharg) and Kharko Islands

In recent decade's tourism industry is one of main reasons of the social and economical development for many countries; so these countries try to gain more portion of it for themselves. The excessive natural and cultural touristy potentialities in Iran made this country to be one of the most attractive sightseeing areas, although; Iran has got the lowest rate of tourists. Khark Island is about 32 km. It is a beautiful coral reef coast; about 98% of oil export has been done through this place. The ecotourism potentialities of Khark and Kharko Islands (about 3.7km far from Khark) are the reason to consider ecotourism and the main activity in these islands which is exporting oil at the same time. This article refers to way of measuring the geographical coordination of the place, and the potentialities, ecotourism attraction of the islands and introduces some ideas in order to expand tourism in the islands.

A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations

We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.

Arabic Character Recognition using Artificial Neural Networks and Statistical Analysis

In this paper, an Arabic letter recognition system based on Artificial Neural Networks (ANNs) and statistical analysis for feature extraction is presented. The ANN is trained using the Least Mean Squares (LMS) algorithm. In the proposed system, each typed Arabic letter is represented by a matrix of binary numbers that are used as input to a simple feature extraction system whose output, in addition to the input matrix, are fed to an ANN. Simulation results are provided and show that the proposed system always produces a lower Mean Squared Error (MSE) and higher success rates than the current ANN solutions.

Intrinsic Electromagnetic Fields and Atom-Field Coupling in Living Cells

The possibility of intrinsic electromagnetic fields within living cells and their resonant self-interaction and interaction with ambient electromagnetic fields is suggested on the basis of a theoretical and experimental study. It is reported that intrinsic electromagnetic fields are produced in the form of radio-frequency and infra-red photons within atoms (which may be coupled or uncoupled) in cellular structures, such as the cell cytoskeleton and plasma membrane. A model is presented for the interaction of these photons among themselves or with atoms under a dipole-dipole coupling, induced by single-photon or two-photon processes. This resonance is manifested by conspicuous field amplification and it is argued that it is possible for these resonant photons to undergo tunnelling in the form of evanescent waves to a short range (of a few nanometers to micrometres). This effect, suggested as a resonant photon tunnelling mechanism in this report, may enable these fields to act as intracellular signal communication devices and as bridges between macromolecules or cellular structures in the cell cytoskeleton, organelles or membrane. A brief overview of an experimental technique and a review of some preliminary results are presented, in the detection of these fields produced in living cell membranes under physiological conditions.

Multiwavelet and Biological Signal Processing

In this paper we are to find the optimum multiwavelet for compression of electrocardiogram (ECG) signals and then, selecting it for using with SPIHT codec. At present, it is not well known which multiwavelet is the best choice for optimum compression of ECG. In this work, we examine different multiwavelets on 24 sets of ECG data with entirely different characteristics, selected from MIT-BIH database. For assessing the functionality of the different multiwavelets in compressing ECG signals, in addition to known factors such as Compression Ratio (CR), Percent Root Difference (PRD), Distortion (D), Root Mean Square Error (RMSE) in compression literature, we also employed the Cross Correlation (CC) criterion for studying the morphological relations between the reconstructed and the original ECG signal and Signal to reconstruction Noise Ratio (SNR). The simulation results show that the Cardinal Balanced Multiwavelet (cardbal2) by the means of identity (Id) prefiltering method to be the best effective transformation. After finding the most efficient multiwavelet, we apply SPIHT coding algorithm on the transformed signal by this multiwavelet.

Wiener Filter as an Optimal MMSE Interpolator

The ideal sinc filter, ignoring the noise statistics, is often applied for generating an arbitrary sample of a bandlimited signal by using the uniformly sampled data. In this article, an optimal interpolator is proposed; it reaches a minimum mean square error (MMSE) at its output in the presence of noise. The resulting interpolator is thus a Wiener filter, and both the optimal infinite impulse response (IIR) and finite impulse response (FIR) filters are presented. The mean square errors (MSE-s) for the interpolator of different length impulse responses are obtained by computer simulations; it shows that the MSE-s of the proposed interpolators with a reasonable length are improved about 0.4 dB under flat power spectra in noisy environment with signal-to-noise power ratio (SNR) equal 10 dB. As expected, the results also demonstrate the improvements for the MSE-s with various fractional delays of the optimal interpolator against the ideal sinc filter under a fixed length impulse response.

Method of Intelligent Fault Diagnosis of Preload Loss for Single Nut Ball Screws through the Sensed Vibration Signals

This paper proposes method of diagnosing ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process. The proposed method can diagnose ball screw preload loss through vibration signals when the machine tool is in operation. Maximum dynamic preload of 2 %, 4 %, and 6 % ball screws were predesigned, manufactured, and tested experimentally. Signal patterns are discussed and revealed using Empirical Mode Decomposition(EMD)with the Hilbert Spectrum. Different preload features are extracted and discriminated using HHT. The irregularity development of a ball screw with preload loss is determined and abstracted using MSE based on complexity perception. Experiment results show that the proposed method can predict the status of ball screw preload loss. Smart sensing for the health of the ball screw is also possible based on a comparative evaluation of MSE by the signal processing and pattern matching of EMD/HHT. This diagnosis method realizes the purposes of prognostic effectiveness on knowing the preload loss and utilizing convenience.

Optimum Neural Network Architecture for Precipitation Prediction of Myanmar

Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a suitable neural network model for monthly precipitation mapping of Myanmar. Using 3-layerd neural network models, 100 cases are tested by changing the number of input and hidden nodes from 1 to 10 nodes, respectively, and only one outputnode used. The optimum model with the suitable number of nodes is selected in accordance with the minimum forecast error. In measuring network performance using Root Mean Square Error (RMSE), experimental results significantly show that 3 inputs-10 hiddens-1 output architecture model gives the best prediction result for monthly precipitation in Myanmar.

Analysis of Chatter in Ball End Milling by Wavelet Transform

The chatter is one of the major limitations of the productivity in the ball end milling process. It affects the surface roughness, the dimensional accuracy and the tool life. The aim of this research is to propose the new system to detect the chatter during the ball end milling process by using the wavelet transform. The proposed method is implemented on the 5-axis CNC machining center and the new three parameters are introduced from three dynamic cutting forces, which are calculated by taking the ratio of the average variances of dynamic cutting forces to the absolute variances of themselves. It had been proved that the chatter can be easier to detect during the in-process cutting by using the new parameters which are proposed in this research. The experimentally obtained results showed that the wavelet transform can provide the reliable results to detect the chatter under various cutting conditions.

Maintenance of Philosophical, Humanistic and Religious Values of Security of the Kazakh Nation

People have always needed to believe in some supernatural power, which could explain nature phenomena. Different kinds of religions like Christianity, Hinduism, Islam, Buddhism have thought believers in all world, how to behave themselves. We think the most important role of religion in modern society most important role of religion in modern society is safety of the People. World and traditional religion played a prominent role in the socio-cultural progress, and in the development of man as a spiritual being. At the heart of religious morals the belief in god and responsibility before it lies and specifies religious and ethical values and categories . The religion is based on ethical standards historically developed by society, requirements and concepts, but it puts all social and moral relations of the person in dependence on religious values. For everything that the believer makes on a debt or a duty, he bears moral responsibility before conscience, people and god. The concept of value of religious morals takes the central place because the religion from all forms of public consciousness most values is painted as it is urged to answer vital questions. Any religion not only considers questions of creation of the world, sense of human existence, relationship of god and the person, but also offers the ethical concept, develops rules of behavior of people. The religion a long time dominated in the history of culture, and during this time created a set of cultural and material values. The identity of Kazakh culture can be defined as a Cultural identity traditional ,national identity and the identity values developed by Kazakh people in process of cultural-historical development, promoting formation of Kazakh culture identity on public consciousness. Identity is the historical process but always the tradition exists in it as a component of stability, as a component of self that what this identity formed .

A Discriminatory Rewarding Mechanism for Sybil Detection with Applications to Tor

This paper presents an economic game for sybil detection in a distributed computing environment. Cost parameters reflecting impacts of different sybil attacks are introduced in the sybil detection game. The optimal strategies for this game in which both sybil and non-sybil identities are expected to participate are devised. A cost sharing economic mechanism called Discriminatory Rewarding Mechanism for Sybil Detection is proposed based on this game. A detective accepts a security deposit from each active agent, negotiates with the agents and offers rewards to the sybils if the latter disclose their identity. The basic objective of the detective is to determine the optimum reward amount for each sybil which will encourage the maximum possible number of sybils to reveal themselves. Maintaining privacy is an important issue for the mechanism since the participants involved in the negotiation are generally reluctant to share their private information. The mechanism has been applied to Tor by introducing a reputation scoring function.

A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy

In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)" that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.

Union is Strength in Lossy Image Compression

In this work, we present a comparison between different techniques of image compression. First, the image is divided in blocks which are organized according to a certain scan. Later, several compression techniques are applied, combined or alone. Such techniques are: wavelets (Haar's basis), Karhunen-Loève Transform, etc. Simulations show that the combined versions are the best, with minor Mean Squared Error (MSE), and higher Peak Signal to Noise Ratio (PSNR) and better image quality, even in the presence of noise.

Principal Component Regression in Noninvasive Pineapple Soluble Solids Content Assessment Based On Shortwave Near Infrared Spectrum

The Principal component regression (PCR) is a combination of principal component analysis (PCA) and multiple linear regression (MLR). The objective of this paper is to revise the use of PCR in shortwave near infrared (SWNIR) (750-1000nm) spectral analysis. The idea of PCR was explained mathematically and implemented in the non-destructive assessment of the soluble solid content (SSC) of pineapple based on SWNIR spectral data. PCR achieved satisfactory results in this application with root mean squared error of calibration (RMSEC) of 0.7611 Brix°, coefficient of determination (R2) of 0.5865 and root mean squared error of crossvalidation (RMSECV) of 0.8323 Brix° with principal components (PCs) of 14.