Secure and Failure Factors of e-Government Projects Implementation in Developing Country: A Study on the Implementation of Kingdom of Bahrain

The concept of e-government has begun to spread among countries. It is based on the use of information communication technology (ICT) to fully utilize government resources, as well as to provide government services to citizens, investors and foreigners. Critical factors are the factors that are determined by the senior management of each organization; the success or failure of the organization depends on the effective implementation of critical factors. These factors vary from one organization to another according to their activity, size and functions. It is very important that organizations identify them in order to avoid the risk of implementing initiatives that may fail to work, while simultaneously exploiting opportunities that may succeed in working. The main focus of this paper is to investigate the majority of critical success factors (CSFs) associated with the implementation of e-government projects. This study concentrates on both technical and nontechnical factors. This paper concludes by listing the majority of CSFs relating to successful e-government implementation in Bahrain.

Interfacing C and TMS320C6713 Assembly Language (Part-I)

This paper describes an interfacing of C and the TMS320C6713 assembly language which is crucially important for many real-time applications. Similarly, interfacing of C with the assembly language of a conventional microprocessor such as MC68000 is presented for comparison. However, it should be noted that the way the C compiler passes arguments among various functions in the TMS320C6713-based environment is totally different from the way the C compiler passes arguments in a conventional microprocessor such as MC68000. Therefore, it is very important for a user of the TMS320C6713-based system to properly understand and follow the register conventions when interfacing C with the TMS320C6713 assembly language subroutine. It should be also noted that in some cases (examples 6-9) the endian-mode of the board needs to be taken into consideration. In this paper, one method is presented in great detail. Other methods will be presented in the future.

System Identification and Control the Azimuth Angle of the Platform of MLRS by PID Controller

This paper presents the system identification by physical-s law method and designs the controller for the Azimuth Angle Control of the Platform of the Multi-Launcher Rocket System (MLRS) by Root Locus technique. The plant mathematical model was approximated using MATLAB for simulation and analyze the system. The controller proposes the implementation of PID Controller using Programmable Logic Control (PLC) for control the plant. PID Controllers are widely applicable in industrial sectors and can be set up easily and operate optimally for enhanced productivity, improved quality and reduce maintenance requirement. The results from simulation and experiments show that the proposed a PID Controller to control the elevation angle that has superior control performance by the setting time less than 12 sec, the rise time less than 1.6 sec., and zero steady state. Furthermore, the system has a high over shoot that will be continue development.

Image Enhancement of Medical Images using Gabor Filter Bank on Hexagonal Sampled Grids

For about two decades scientists have been developing techniques for enhancing the quality of medical images using Fourier transform, DWT (Discrete wavelet transform),PDE model etc., Gabor wavelet on hexagonal sampled grid of the images is proposed in this work. This method has optimal approximation theoretic performances, for a good quality image. The computational cost is considerably low when compared to similar processing in the rectangular domain. As X-ray images contain light scattered pixels, instead of unique sigma, the parameter sigma of 0.5 to 3 is found to satisfy most of the image interpolation requirements in terms of high Peak Signal-to-Noise Ratio (PSNR) , lower Mean Squared Error (MSE) and better image quality by adopting windowing technique.

Novel D- glucose Based Glycomonomers Synthesis and Characterization

In the last decade, carbohydrates have attracted great attention as renewable resources for the chemical industry. Carbohydrates are abundantly found in nature in the form of monomers, oligomers and polymers, or as components of biopolymers and other naturally occurring substances. As natural products, they play important roles in conferring certain physical, chemical, and biological properties to their carrier molecules.The synthesis of this particular carbohydrate glycomonomer is part of our work to obtain biodegradable polymers. Our current paper describes the synthesis and characterization of a novel carbohydrate glycomonomer starting from D-glucose, in several synthesis steps, that involve the protection/deprotection of the D-glucose ring via acetylation, tritylation, then selective deprotection of the aromaticaliphatic protective group, in order to obtain 1,2,3,4-tetra-O-acetyl- 6-O-allyl-β-D-glucopyranose. The glycomonomer was then obtained by the allylation in drastic conditions of 1,2,3,4-tetra-O-acetyl-6-Oallyl- β-D-glucopyranose with allylic alcohol in the presence of stannic chloride, in methylene chloride, at room temperature. The proposed structure of the glycomonomer, 2,3,4-tri-O-acetyl-1,6-di- O-allyl-β-D-glucopyranose, was confirmed by FTIR, NMR and HPLC-MS spectrometry. This glycomonomer will be further submitted to copolymerization with certain acrylic or methacrylic monomers in order to obtain competitive plastic materials for applications in the biomedical field.

ClassMATE: Enabling Ambient Intelligence in the Classroom

Ambient Intelligence (AmI) environments bring significant potential to exploit sophisticated computer technology in everyday life. In particular, the educational domain could be significantly enhanced through AmI, as personalized and adapted learning could be transformed from paper concepts and prototypes to real-life scenarios. In this paper, an integrated framework is presented, named ClassMATE, supporting ubiquitous computing and communication in a school classroom. The main objective of ClassMATE is to enable pervasive interaction and context aware education in the technologically augmented classroom of the future.

Emotion Dampening Strategy and Internalizing Problem Behavior: Affect Intensity as Control Variables

Contrary to negative emotion regulation, coping with positive moods have received less attention in adolescent adjustment. However, some research has found that everyone is different on dealing with their positive emotions, which affects their adaptation and well-being. The purpose of the present study was to investigate the relationship between positive emotions dampening and internalizing behavior problems of adolescent in Taiwan. A survey was conducted and 208 students (12 to14 years old) completed the strengths and difficulties questionnaire (SDQ), the Affect Intensity Measure, and the positive emotions dampening scale. Analysis methods such as descriptive statistics, t-test, Pearson correlations and multiple regression were adapted. The results were as follows: Emotionality and internalizing problem behavior have significant gender differences. Compared to boys, girls have a higher score on negative emotionality and are at a higher risk for internalizing symptoms. However, there are no gender differences on positive emotion dampening. Additionally, in the circumstance that negative emotionality acted as the control variable, positive emotion dampening strategy was (positive) related to internalizing behavior problems. Given the results of this study, it is suggested that coaching deconstructive positive emotion strategies is to assist adolescents with internalizing behavior problems is encouraged.

Evaluation of Stent Performances using FEA considering a Realistic Balloon Expansion

A number of previous studies were rarely considered the effects of transient non-uniform balloon expansion on evaluation of the properties and behaviors of stents during stent expansion, nor did they determine parameters to maximize the performances driven by mechanical characteristics. Therefore, in order to fully understand the mechanical characteristics and behaviors of stent, it is necessary to consider a realistic modeling of transient non-uniform balloon-stent expansion. The aim of the study is to propose design parameters capable of improving the ability of vascular stent through a comparative study of seven commercial stents using finite element analyses of a realistic transient non-uniform balloon-stent expansion process. In this study, seven representative commercialized stents were evaluated by finite element (FE) analysis in terms of the criteria based on the itemized list of Food and Drug Administration (FDA) and European Standards (prEN). The results indicate that using stents composed of opened unit cells connected by bend-shaped link structures and controlling the geometrical and morphological features of the unit cell strut or the link structure at the distal ends of stent may improve mechanical characteristics of stent. This study provides a better method at the realistic transient non-uniform balloon-stent expansion by investigating the characteristics, behaviors, and parameters capable of improving the ability of vascular stent.

Optimal Generation Expansion Planning Strategy with Carbon Trading

Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.

A Processor with Dynamically Reconfigurable Circuit for Floating-Point Arithmetic

This paper describes about dynamic reconfiguration to miniaturize arithmetic circuits in general-purpose processor. Dynamic reconfiguration is a technique to realize required functions by changing hardware construction during operation. The proposed arithmetic circuit performs floating-point arithmetic which is frequently used in science and technology. The data format is floating-point based on IEEE754. The proposed circuit is designed using VHDL, and verified the correct operation by simulations and experiments.

Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems

Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.

Totally Integrated Smart Energy System through Data Acquisition via Remote Location

This paper discusses the approach of real-time controlling of the energy management system using the data acquisition tool of LabVIEW. The main idea of this inspiration was to interface the Station (PC) with the system and publish the data on internet using LabVIEW. In this venture, controlling and switching of 3 phase AC loads are effectively and efficiently done. The phases are also sensed through devices. In case of any failure the attached generator starts functioning automatically. The computer sends command to the system and system respond to the request. The modern feature is to access and control the system world-wide using world wide web (internet). This controlling can be done at any time from anywhere to effectively use the energy especially in developing countries where energy management is a big problem. In this system totally integrated devices are used to operate via remote location.

Simulation of Loss-of-Flow Transient in a Radiant Steam Boiler with Relap5/Mod3.2

loss of feedwater accident is one of the frequently sever accidents in steam boiler facilities. It threatens the system structural integrity and generates serious hazards and economic loses. The safety analysis of the thermal installations, based extensively on the numeric simulation. The simulation analysis using realistic computer codes like Relap5/Mod3.2 will help understand steam boiler thermal-hydraulic behavior during normal and abnormal conditions. In this study, we are interested on the evaluation of the radiant steam boiler assessment and response to loss-of-feedwater accident. Pressure, temperature and flow rate profiles are presented in various steam boiler system components. The obtained results demonstrate the importance and capability of the Relap5/Mod3.2 code in the thermal-hydraulic analysis of the steam boiler facilities.

The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation

This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.

A General Regression Test Selection Technique

This paper presents a new methodology to select test cases from regression test suites. The selection strategy is based on analyzing the dynamic behavior of the applications that written in any programming language. Methods based on dynamic analysis are more safe and efficient. We design a technique that combine the code based technique and model based technique, to allow comparing the object oriented of an application that written in any programming language. We have developed a prototype tool that detect changes and select test cases from test suite.

Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization

In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .

Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis

Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.

ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset

Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.

Numerical Analysis of Hydrogen Transport using a Hydrogen-Enhanced Localized Plasticity Mechanism

In this study, the hydrogen transport phenomenon was numerically evaluated by using hydrogen-enhanced localized plasticity (HELP) mechanisms. Two dominant governing equations, namely, the hydrogen transport model and the elasto-plastic model, were introduced. In addition, the implicitly formulated equations of the governing equations were implemented into ABAQUS UMAT user-defined subroutines. The simulation results were compared to published results to validate the proposed method.

Structural Cost of Optimized Reinforced Concrete Isolated Footing

This paper presents an analytical model to estimate the cost of an optimized design of reinforced concrete isolated footing base on structural safety. Flexural and optimized formulas for square and rectangular footingare derived base on ACI building code of design, material cost and optimization. The optimization constraints consist of upper and lower limits of depth and area of steel. Footing depth and area of reinforcing steel are to be minimized to yield the optimal footing dimensions. Optimized footing materials cost of concrete, reinforcing steel and formwork of the designed sections are computed. Total cost factor TCF and other cost factors are developed to generalize and simplify the calculations of footing material cost. Numerical examples are presented to illustrate the model capability of estimating the material cost of the footing for a desired axial load.