Numerical and Experimental Analyses of a Semi-Active Pendulum Tuned Mass Damper

Modern structures such as floor systems, pedestrian bridges and high-rise buildings have become lighter in mass and more flexible with negligible damping and thus prone to vibration. In this paper, a semi-actively controlled pendulum tuned mass dampers (PTMD) is presented that uses air springs as both the restoring (resilient) and energy dissipating (damping) elements; the tuned mass damper (TMD) uses no passive dampers. The proposed PTMD can readily be fine-tuned and re-tuned, via software, without changing any hardware. Almost all existing semi-active systems have the three elements that passive TMDs have, i.e., inertia, resilient, and dissipative elements with some adjustability built into one or two of these elements. The proposed semi-active air suspended TMD, on the other hand, is made up of only inertia and resilience elements. A notable feature of this TMD is the absence of a physical damping element in its make-up. The required viscous damping is introduced into the TMD using a semi-active control scheme residing in a micro-controller which actuates a high-speed proportional valve regulating the flow of air in and out of the air springs. In addition to introducing damping into the TMD, the semi-active control scheme adjusts the stiffness of the TMD. The focus of this work has been the synthesis and analysis of the control algorithms and strategies to vary the tuning accuracy, introduce damping into air suspended PTMD, and enable the PTMD to self-tune itself. The accelerations of the main structure and PTMD as well as the pressure in the air springs are used as the feedback signals in control strategies. Numerical simulation and experimental evaluation of the proposed tuned damping system are presented in this paper.

Robot-assisted Relaxation Training for Children with Autism Spectrum Disorders

Cognitive Behavioral Therapy (CBT) has been proven an effective tool to address anger and anxiety issues in children and adolescents with Autism Spectrum Disorders (ASD). Robot-enhanced therapy has been used in psychosocial and educational interventions for children with ASD with promising results. Whenever CBT-based techniques were incorporated in robot-based interventions, they were mainly performed in group sessions. Objectives: The study’s main objective was the implementation and evaluation of the effectiveness of a relaxation training intervention for children with ASD, delivered by the social robot NAO. Methods: 20 children (aged 7–12 years) were randomly assigned to 16 sessions of relaxation training implemented twice a week. Two groups were formed: the NAO group (children participated in individual sessions with the support of NAO) and the control group (children participated in individual sessions with the support of the therapist only). Participants received three different relaxation scenarios of increasing difficulty (a breathing scenario, a progressive muscle relaxation scenario and a body scan medication scenario), as well as related homework sheets for practicing. Pre- and post-intervention assessments were conducted using the Child Behavior Checklist (CBCL) and the Strengths and Difficulties Questionnaire for parents (SDQ-P). Participants were also asked to complete an open-ended questionnaire to evaluate the effectiveness of the training. Parents’ satisfaction was evaluated via a questionnaire and children satisfaction was assessed by a thermometer scale. Results: The study supports the use of relaxation training with the NAO robot as instructor for children with ASD. Parents of enrolled children reported high levels of satisfaction and provided positive ratings of the training acceptability. Children in the NAO group presented greater motivation to complete homework and adopt the learned techniques at home. Conclusions: Relaxation training could be effectively integrated in robot-assisted protocols to help children with ASD regulate emotions and develop self-control.

The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection

This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.

Classification of Extreme Ground-Level Ozone Based on Generalized Extreme Value Model for Air Monitoring Station

Higher ground-level ozone (GLO) concentration adversely affects human health, vegetations as well as activities in the ecosystem. In Malaysia, most of the analysis on GLO concentration are carried out using the average value of GLO concentration, which refers to the centre of distribution to make a prediction or estimation. However, analysis which focuses on the higher value or extreme value in GLO concentration is rarely explored. Hence, the objective of this study is to classify the tail behaviour of GLO using generalized extreme value (GEV) distribution estimation the return level using the corresponding modelling (Gumbel, Weibull, and Frechet) of GEV distribution. The results show that Weibull distribution which is also known as short tail distribution and considered as having less extreme behaviour is the best-fitted distribution for four selected air monitoring stations in Peninsular Malaysia, namely Larkin, Pelabuhan Kelang, Shah Alam, and Tanjung Malim; while Gumbel distribution which is considered as a medium tail distribution is the best-fitted distribution for Nilai station. The return level of GLO concentration in Shah Alam station is comparatively higher than other stations. Overall, return levels increase with increasing return periods but the increment depends on the type of the tail of GEV distribution’s tail. We conduct this study by using maximum likelihood estimation (MLE) method to estimate the parameters at four selected stations in Peninsular Malaysia. Next, the validation for the fitted block maxima series to GEV distribution is performed using probability plot, quantile plot and likelihood ratio test. Profile likelihood confidence interval is tested to verify the type of GEV distribution. These results are important as a guide for early notification on future extreme ozone events.

A Retrospective Review of Sino-US Relations: Foreign Relations Strategies of Trump and Biden

This study used the methodology of a retrospective review to assess Sino-US relations and foreign relations strategies of Trump and Biden and found that while the Trump administration has ignited a trade war and a technology war with China, the stage is set for the Biden administration as to how it will handle Sino-US relations. We conclude that Biden is apparently tough on China and may counter the influence of China but will seek to maintain strategic cooperation with China on issues of mutual interest and there might be a renegotiation of the trade deal.

Research on User Experience and Brand Attitudes of Chatbots

With the advancement of artificial intelligence technology, most companies are aware of the profound potential of artificial intelligence in commercial marketing. Man-machine dialogue has become the latest trend in marketing customer service. However, chatbots are often considered to be lack of intelligent or unfriendly conversion, which instead reduces the communication effect of chatbots. To ensure that chatbots represent the brand image and provide a good user experience, companies and users attach great importance. In this study, customer service chatbot was used as the research sample. The research variables are based on the theory of artificial intelligence emotions, integrating the technology acceptance model and innovation diffusion theory, and the three aspects of pleasure, arousal, and dominance of the human-machine PAD (Pleasure, Arousal and Dominance) dimension. The results show that most of the participants have a higher acceptance of innovative technologies and are high pleasure and arousal in the user experience. Participants still have traditional gender (female) service stereotypes about customer service chatbots. Users who have high trust in using chatbots can easily enhance brand acceptance and easily accept brand messages, extend the trust of chatbots to trust in the brand, and develop a positive attitude towards the brand.

Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks

The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing handover procedure while the user is on the move. However, dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and/or handover failure because of short time of stay of a user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method decreases the candidate small cell list, unnecessary handovers, handover failure and short time of stay cells compared to the competitive method.

An Investigation into the Role of School Social Workers and Psychologists with Children Experiencing Special Educational Needs in Libya

This study explores the function of schools’ psychosocial services within Libyan mainstream schools in relation to children’s special educational needs (SEN). This is with the aim to examine the role of school social workers and psychologists in the assessment procedure of children with SEN. A semi-structured interview was used in this study, with 21 professionals working in the schools’ psychosocial services, of whom 13 were school social workers (SSWs) and eight were school psychologists (SPs). The results of the interviews with SSWs and SPs provided insights into how SEN children are identified, assessed, and dealt with by school professionals. It appears from the results that what constitutes a problem has not changed significantly, and the link between learning difficulties and behavioural difficulties is also evident from this study. Children with behaviour difficulties are more likely to be referred to school psychosocial services than children with learning difficulties. Yet, it is not clear from the interviews with SSWs and SPs whether children are excluded merely because of their behaviour problems. Instead, they would surely be expelled from the school if they failed academically. Furthermore, the interviews with SSWs and SPs yield a rather unusual source accountable for children’s SEN; school-related difficulties were a major factor in which almost all participants attributed children’s learning and behaviour problems to teachers’ deficiencies, followed by school lack of resources.

The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data

Edgeworth Approximation, Bootstrap and Monte Carlo Simulations have a considerable impact on the achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that have the components of a Cash-Flow of one of the most successful businesses in the world, as the financial activity, operational activity and investing activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case we have created a Vector Autoregression model, and after that we have generated the impulse responses in the terms of Asymptotic Analysis (Edgeworth Approximation), Monte Carlo Simulations and Residual Bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied, that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.

The Art of Leadership: Skills to Inspire the Team to Overcome Project Challenges and Achieve Their Goals

This paper highlights skills that a leader needs to acquire to lead a team successfully. With an appropriate vision and strategy, a team can be inspired, influenced and easily led. The importance of setting codes of conduct and establishing mutual agreements between the team members can help in minimizing issues and improving overall productivity. Leadership skills include the power of questioning (PoQ), effective communication, identification of team member responsibilities, and assessment of self and the team. This paper will highlight the impact of good leadership on work progress and overall team performance. The paper explains how leaders make correct decisions by avoiding hasty actions that could generate new errors, mistakes, and issues. The importance of positive expectations for the team is addressed in this paper that could result in efficient control of the work with better outcomes.

Study of the Thermal Performance of Bio-Sourced Materials Used as Thermal Insulation in Buildings under Humid Tropical Climate

In the fight against climate change, the energy consuming building sector must also be taken into account to solve this problem. In this case thermal insulation of buildings using bio-based materials is an interesting solution. Therefore, the thermal performance of some materials of this type has been studied. The advantages of these natural materials of plant origin are multiple, biodegradable, low economic cost, renewable and readily available. The use of biobased materials is widespread in the building sector in order to replace conventional insulation materials with natural materials. Vegetable fibers are very important because they have good thermal behaviour and good insulating properties. The aim of using bio-sourced materials is in line with the logic of energy control and environmental protection, the approach is to make the inhabitants of the houses comfortable and reduce their energy consumption (energy efficiency). In this research we will present the results of studies carried out on the thermal conductivity of banana leaves, latan leaves, vetivers fibers, palm kernel fibers, sargassum, coconut leaves, sawdust and bulk sugarcane leaves. The study on thermal conductivity was carried out in two ways, on the one hand using the flash method, and on the other hand a so-called hot box experiment was carried out. We will discuss and highlight a number of influential factors such as moisture and air pockets present in the samples on the thermophysical properties of these materials, in particular thermal conductivity. Finally, the result of a thermal performance test of banana leaves on a roof in Haiti will also be presented in this work.

Ballistics of Main Seat Ejection Cartridges for Aircraft Application

This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time to reach the maximum pressure, and time required to reach half the maximum pressure that responsible to the spinal injury of the pilot are assessed. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing is carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility is devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on SET. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for aircraft application.

Reference Architecture for Intelligent Enterprise Solutions

Data in IT systems in enterprises have been growing at phenomenal pace. This has provided opportunities to run analytics to gather intelligence on key business parameters that enable them to provide better products and services to customers. While there are several Artificial Intelligence/Machine Learning (AI/ML) and Business Intelligence (BI) tools and technologies available in marketplace to run analytics, there is a need for an integrated view when developing intelligent solutions in enterprises. This paper progressively elaborates a reference model for enterprise solutions, builds an integrated view of data, information and intelligence components and presents a reference architecture for intelligent enterprise solutions. Finally, it applies the reference architecture to an insurance organization. The reference architecture is the outcome of experience and insights gathered from developing intelligent solutions for several organizations.

Scientific Methods in Educational Management: The Metasystems Perspective

Although scientific methods have been the subject of a large number of papers, the term ‘scientific methods in educational management’ is still not well defined. In this paper, it is adopted the metasystems perspective to define the mentioned term and distinguish them from methods used in time of the scientific management and knowledge management paradigms. In our opinion, scientific methods in educational management rely on global phenomena, events, and processes and their influence on the educational organization. Currently, scientific methods in educational management are integrated with the phenomenon of globalization, cognitivisation, and openness, etc. of educational systems and with global events like the COVID-19 pandemic. Concrete scientific methods are nested in a hierarchy of more and more abstract models of educational management, which form the context of the global impact on education, in general, and learning outcomes, in particular. However, scientific methods can be assigned to a specific mission, strategy, or tactics of educational management of the concrete organization, either by the global management, local development of school organization, or/and development of the life-long successful learner. By accepting this assignment, the scientific method becomes a personal goal of each individual with the educational organization or the option to develop the educational organization at the global standards. In our opinion, in educational management, the scientific methods need to confine the scope to the deep analysis of concrete tasks of the educational system (i.e., teaching, learning, assessment, development), which result in concrete strategies of organizational development. More important are seeking the ways for dynamic equilibrium between the strategy and tactic of the planetary tasks in the field of global education, which result in a need for ecological methods of learning and communication. In sum, distinction between local and global scientific methods is dependent on the subjective conception of the task assignment, measurement, and appraisal. Finally, we conclude that scientific methods are not holistic scientific methods, but the strategy and tactics implemented in the global context by an effective educational/academic manager.

Lamb Wave Wireless Communication in Healthy Plates Using Coherent Demodulation

Guided ultrasonic waves are used in Non-Destructive Testing and Structural Health Monitoring for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average bit error percentage. Results has shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

The Role of the Injured Party's Fault in the Apportionment of Damages in Tort Law: A Comparative-Historical Study between Common Law and Islamic Law

In order to understand the role of the injured party's fault in dividing liability, we studied its historical background. In common law, the traditional contributory negligence rule was a complete defense. Then the legislature and judicial procedure modified that rule to one of apportionment. In Islamic law, too, the Action rule was at first used when the injured party was the sole cause, but jurists expanded the scope of this rule, so this rule was used in cases where both the injured party's fault and that of the other party are involved. There are some popular approaches for apportionment of damages. Some common law countries like Britain had chosen ‘the causal potency approach’ and ‘fixed apportionment’. Islamic countries like Iran have chosen both ‘the relative blameworthiness’ and ‘equal apportionment’ approaches. The article concludes that both common law and Islamic law believe in the division of responsibility between a wrongdoer claimant and the defendant. In contrast, in the apportionment of responsibility, Islamic law mostly believes in equal apportionment that is way easier and saves time and money, but common law legal systems have chosen the causal potency approach which is more complicated than the rival approach but is fairer.

Performance of BLDC Motor under Kalman Filter Sensorless Drive

The performance of a permanent magnet brushless direct current (BLDC) motor controlled by the Kalman filter based position-sensorless drive is studied in terms of its dependence from the system’s parameters variations. The effects of the system’s parameters changes on the dynamic behavior of state variables are verified. Simulated is the closed loop control scheme with Kalman filter in the feedback line. Distinguished are two separate data sampling modes in analyzing feedback output from the BLDC motor: (1) equal angular separation and (2) equal time intervals. In case (1), the data are collected via equal intervals  of rotor’s angular position i, i.e. keeping  = const. In case (2), the data collection time points ti are separated by equal sampling time intervals t = const. Demonstrated are the effects of the parameters changes on the sensorless control flow, in particular, reduction of the instability torque ripples, switching spikes, and torque load balancing. It is specifically shown that an efficient suppression of commutation induced instability torque ripples is an achievable selection of the sampling rate in the Kalman filter settings above a certain critical value. The computational cost of such suppression is shown to be higher for the motors with lower induction values of the windings.

Lagrangian Flow Skeletons Captured in the Wake of a Swimming Nematode C. elegans Using an Immersed Boundary Fluid-Structure Interaction Approach

In this paper, Lagrangian coherent structure (LCS) concept is applied to wake flows generated in the up/down-stream of a swimming nematode C. elegans in an intermediate Re number range, i.e., 250-1200. It materializes Lagrangian hidden structures depicting flow transport barriers. To pursue the goals, nematode swimming in a quiescent fluid flow environment is numerically simulated by a two-way fluid-structure interaction (FSI) approach with the aid of immersed boundary method (IBM). In this regard, incompressible Navier-Stokes equations, fully-coupled with Lagrangian deformation equations for the immersed body, are solved using IB2d code. For all simulations, nematode’s body is modeled with a parametrized spring-fiber built-in case available in the computational code. Reverse von-Kármán vortex street formation and vortex shedding characteristics are studied and discussed in details via LCS approach, including grid resolution, integration time and Reynolds number effects. Results unveil presence of different flow regions with distinct fluid particle fates in the swimming animal’s wake and formation of so-called ‘mushroom-shaped’ structures in attracting LCS identities.

Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Study of Compatibility and Oxidation Stability of Vegetable Insulating Oils

The use of vegetable oil (or natural ester) as an insulating fluid in electrical transformers is a trend that aims to contribute to environmental preservation since it is biodegradable and non-toxic. Besides, vegetable oil has high flash and combustion points, being considered a fire safety fluid. However, vegetable oil is usually less stable towards oxidation than mineral oil. Both insulating fluids, mineral and vegetable oils, need to be tested periodically according to specific standards. Oxidation stability can be determined by the induction period measured by conductivity method (Rancimat) by monitoring the effectivity of oil’s antioxidant additives, a methodology already developed for food application and biodiesel but still not standardized for insulating fluids. Besides adequate oxidation stability, fluids must be compatible with transformer's construction materials under normal operating conditions to ensure that damage to the oil and parts of the transformer does not occur. ASTM standard and Brazilian normative differ in parameters evaluated, which reveals the need to regulate tests for each oil type. The aim of this study was to assess oxidation stability and compatibility of vegetable oils to suggest the best way to assure a viable performance of vegetable oil as transformer insulating fluid. The determination of the induction period for several vegetable insulating oils from the local market by using Rancimat was carried out according to BS EN 14112 standard, at different temperatures (110, 120, and 130 °C). Also, the compatibility of vegetable oil was assessed according to ASTM and ABNT NBR standards. The main results showed that the best temperature for use in the Rancimat test is 130 °C, which allows a better observation of conductivity change. The compatibility test results presented differences between vegetable and mineral oil standards that should be taken into account in oil testing since materials compatibility and oxidation stability are essential for equipment reliability.