Abstract: Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.
Abstract: Statement of the automatic speech recognition
problem, the assignment of speech recognition and the application
fields are shown in the paper. At the same time as Azerbaijan speech,
the establishment principles of speech recognition system and the
problems arising in the system are investigated. The computing algorithms of speech features, being the main part
of speech recognition system, are analyzed. From this point of view,
the determination algorithms of Mel Frequency Cepstral Coefficients
(MFCC) and Linear Predictive Coding (LPC) coefficients expressing
the basic speech features are developed. Combined use of cepstrals of
MFCC and LPC in speech recognition system is suggested to
improve the reliability of speech recognition system. To this end, the
recognition system is divided into MFCC and LPC-based recognition
subsystems. The training and recognition processes are realized in
both subsystems separately, and recognition system gets the decision
being the same results of each subsystems. This results in decrease of
error rate during recognition. The training and recognition processes are realized by artificial
neural networks in the automatic speech recognition system. The
neural networks are trained by the conjugate gradient method. In the
paper the problems observed by the number of speech features at
training the neural networks of MFCC and LPC-based speech
recognition subsystems are investigated. The variety of results of neural networks trained from different
initial points in training process is analyzed. Methodology of
combined use of neural networks trained from different initial points
in speech recognition system is suggested to improve the reliability
of recognition system and increase the recognition quality, and
obtained practical results are shown.
Abstract: The aim of the study is to compare behavioral and
EEG reactions in Turkic-speaking inhabitants of Siberia (Tuvinians
and Yakuts) and Russians during the recognition of syntax errors in
native and foreign languages. Sixty-three healthy aboriginals of the
Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and
55 Russians from Novosibirsk participated in the study. EEG were
recorded during execution of error-recognition task in Russian and
English language (in all participants) and in native languages
(Tuvinian or Yakut Turkic-speaking inhabitants). Reaction time (RT)
and quality of task execution were chosen as behavioral measures.
Amplitude and cortical distribution of P300 and P600 peaks of ERP
were used as a measure of speech-related brain activity. In Tuvinians,
there were no differences in the P300 and P600 amplitudes as well as
in cortical topology for Russian and Tuvinian languages, but there
was a difference for English. In Yakuts, the P300 and P600
amplitudes and topology of ERP for Russian language were the same
as Russians had for native language. In Yakuts, brain reactions during
Yakut and English language comprehension had no difference, while
the Russian language comprehension was differed from both Yakut
and English. We found out that the Tuvinians recognized both Russian and
Tuvinian as native languages, and English as a foreign language. The
Yakuts recognized both English and Yakut as foreign languages, but
Russian as a native language. According to the inquirer, both
Tuvinians and Yakuts use the national language as a spoken
language, whereas they do not use it for writing. It can well be a
reason that Yakuts perceive the Yakut writing language as a foreign
language while writing Russian as their native.