Abstract: Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.
Abstract: Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.
Abstract: Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.
Abstract: In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.
Abstract: Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 vs. 0.32, p < 0.05 for inferotemporal vein, 0.33 vs. 0.30, p < 0.01 for inferotemporal artery, 0.34 vs. 0.31, p < 0.01 for superotemporal vein, and 0.33 vs. 0.30, p < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma.
Abstract: This paper presents a self-sustaining mobile system for
counting and classification of vehicles through processing video. It
proposes a counting and classification algorithm divided in four steps
that can be executed multiple times in parallel in a SBC (Single
Board Computer), like the Raspberry Pi 2, in such a way that it
can be implemented in real time. The first step of the proposed
algorithm limits the zone of the image that it will be processed.
The second step performs the detection of the mobile objects using
a BGS (Background Subtraction) algorithm based on the GMM
(Gaussian Mixture Model), as well as a shadow removal algorithm
using physical-based features, followed by morphological operations.
In the first step the vehicle detection will be performed by using
edge detection algorithms and the vehicle following through Kalman
filters. The last step of the proposed algorithm registers the vehicle
passing and performs their classification according to their areas.
An auto-sustainable system is proposed, powered by batteries and
photovoltaic solar panels, and the data transmission is done through
GPRS (General Packet Radio Service)eliminating the need of using
external cable, which will facilitate it deployment and translation to
any location where it could operate. The self-sustaining trailer will
allow the counting and classification of vehicles in specific zones
with difficult access.
Abstract: As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.
Abstract: Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.
Abstract: Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.
Abstract: Digital signal processor, image signal processor and FIR filters have multipliers as an important part of their design. On the basis of Vedic mathematics, Vedic multipliers have come out to be very fast multipliers. One of the image processing applications is edge detection. This research presents a small area and high speed 8 bit Vedic multiplier system comprising of compressor based adders. This results in faster edge detection. This architecture is tested on Xilinx vertex 4 FPGA board and simulations were carried out using the Xilinx synthesis tool. Comparisons are made and this system is found to be smaller in area with high speed (the lesser propagation delay). This compressor based Vedic multiplier is 1.1 times speedier than a typical Vedic multiplier. Also, this Vedic Multiplier is 2 times speedier than a ‘simple’ multiplier.
Abstract: Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).
Abstract: In this paper, we present an application of Riemannian
geometry for processing non-Euclidean image data. We consider the
image as residing in a Riemannian manifold, for developing a new
method to brain edge detection and brain extraction. Automating this
process is a challenge due to the high diversity in appearance brain
tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based
anisotropic diffusion tensor for the segmentation task by integrating
both image edge geometry and Riemannian manifold (geodesic,
metric tensor) to regularize the convergence contour and extract
complex anatomical structures. We check the accuracy of the
segmentation results on simulated brain MRI scans of single
T1-weighted, T2-weighted and Proton Density sequences. We
validate our approach using two different databases: BrainWeb
database, and MRI Multiple sclerosis Database (MRI MS DB). We
have compared, qualitatively and quantitatively, our approach with
the well-known brain extraction algorithms. We show that using
a Riemannian manifolds to medical image analysis improves the
efficient results to brain extraction, in real time, outperforming the
results of the standard techniques.
Abstract: Optic disk segmentation plays a key role in the mass
screening of individuals with diabetic retinopathy and glaucoma
ailments. An efficient hardware-based algorithm for optic disk
localization and segmentation would aid for developing an automated
retinal image analysis system for real time applications. Herein,
TMS320C6416DSK DSP board pixel intensity based fractal analysis
algorithm for an automatic localization and segmentation of the optic
disk is reported. The experiment has been performed on color and
fluorescent angiography retinal fundus images. Initially, the images
were pre-processed to reduce the noise and enhance the quality. The
retinal vascular tree of the image was then extracted using canny
edge detection technique. Finally, a pixel intensity based fractal
analysis is performed to segment the optic disk by tracing the origin
of the vascular tree. The proposed method is examined on three
publicly available data sets of the retinal image and also with the data
set obtained from an eye clinic. The average accuracy achieved is
96.2%. To the best of the knowledge, this is the first work reporting
the use of TMS320C6416DSK DSP board and pixel intensity based
fractal analysis algorithm for an automatic localization and
segmentation of the optic disk. This will pave the way for developing
devices for detection of retinal diseases in the future.
Abstract: In this paper a novel color image compression
technique for efficient storage and delivery of data is proposed. The
proposed compression technique started by RGB to YCbCr color
transformation process. Secondly, the canny edge detection method is
used to classify the blocks into the edge and non-edge blocks. Each
color component Y, Cb, and Cr compressed by discrete cosine
transform (DCT) process, quantizing and coding step by step using
adaptive arithmetic coding. Our technique is concerned with the
compression ratio, bits per pixel and peak signal to noise ratio, and
produce better results than JPEG and more recent published schemes
(like CBDCT-CABS and MHC). The provided experimental results
illustrate the proposed technique that is efficient and feasible in terms
of compression ratio, bits per pixel and peak signal to noise ratio.
Abstract: Image segmentation and edge detection is a fundamental section in image processing. In case of noisy images Edge Detection is very less effective if we use conventional Spatial Filters like Sobel, Prewitt, LOG, Laplacian etc. To overcome this problem we have proposed the use of Stochastic Gradient Mask instead of Spatial Filters for generating gradient images. The present study has shown that the resultant images obtained by applying Stochastic Gradient Masks appear to be much clearer and sharper as per Edge detection is considered.
Abstract: Image Processing is a structure of Signal Processing
for which the input is the image and the output is also an image or
parameter of the image. Image Resolution has been frequently
referred as an important aspect of an image. In Image Resolution
Enhancement, images are being processed in order to obtain more
enhanced resolution. To generate highly resoluted image for a low
resoluted input image with high PSNR value. Stationary Wavelet
Transform is used for Edge Detection and minimize the loss occurs
during Downsampling. Inverse Discrete Wavelet Transform is to get
highly resoluted image. Highly resoluted output is generated from the
Low resolution input with high quality. Noisy input will generate
output with low PSNR value. So Noisy resolution enhancement
technique has been used for adaptive sub-band thresholding is used.
Downsampling in each of the DWT subbands causes information loss
in the respective subbands. SWT is employed to minimize this loss.
Inverse Discrete wavelet transform (IDWT) is to convert the object
which is downsampled using DWT into a highly resoluted object.
Used Image denoising and resolution enhancement techniques will
generate image with high PSNR value. Our Proposed method will
improve Image Resolution and reached the optimized threshold.
Abstract: Edge is variation of brightness in an image. Edge
detection is useful in many application areas such as finding forests,
rivers from a satellite image, detecting broken bone in a medical
image etc. The paper discusses about finding edge of multiple aerial
images in parallel. The proposed work tested on 38 images 37
colored and one monochrome image. The time taken to process N
images in parallel is equivalent to time taken to process 1 image in
sequential. Message Passing Interface (MPI) and Open Computing
Language (OpenCL) is used to achieve task and pixel level
parallelism respectively.
Abstract: The edges of low contrast images are not clearly
distinguishable to human eye. It is difficult to find the edges and
boundaries in it. The present work encompasses a new approach for
low contrast images. The Chebyshev polynomial based fractional
order filter has been used for filtering operation on an image. The
preprocessing has been performed by this filter on the input image.
Laplacian of Gaussian method has been applied on preprocessed
image for edge detection. The algorithm has been tested on two test
images.
Abstract: Real time image and video processing is a demand in
many computer vision applications, e.g. video surveillance, traffic
management and medical imaging. The processing of those video
applications requires high computational power. Thus, the optimal
solution is the collaboration of CPU and hardware accelerators. In
this paper, a Canny edge detection hardware accelerator is proposed.
Edge detection is one of the basic building blocks of video and image
processing applications. It is a common block in the pre-processing
phase of image and video processing pipeline. Our presented
approach targets offloading the Canny edge detection algorithm from
processing system (PS) to programmable logic (PL) taking the
advantage of High Level Synthesis (HLS) tool flow to accelerate the
implementation on Zynq platform. The resulting implementation
enables up to a 100x performance improvement through hardware
acceleration. The CPU utilization drops down and the frame rate
jumps to 60 fps of 1080p full HD input video stream.
Abstract: Advances in the field of image processing envision a
new era of evaluation techniques and application of procedures in
various different fields. One such field being considered is the
biomedical field for prognosis as well as diagnosis of diseases. This
plethora of methods though provides a wide range of options to select
from, it also proves confusion in selecting the apt process and also in
finding which one is more suitable. Our objective is to use a series of
techniques on bone scans, so as to detect the occurrence of
rheumatoid arthritis (RA) as accurately as possible. Amongst other
techniques existing in the field our proposed system tends to be more
effective as it depends on new methodologies that have been proved
to be better and more consistent than others. Computer aided
diagnosis will provide more accurate and infallible rate of
consistency that will help to improve the efficiency of the system.
The image first undergoes histogram smoothing and specification,
morphing operation, boundary detection by edge following algorithm
and finally image subtraction to determine the presence of
rheumatoid arthritis in a more efficient and effective way. Using preprocessing
noises are removed from images and using segmentation,
region of interest is found and Histogram smoothing is applied for a
specific portion of the images. Gray level co-occurrence matrix
(GLCM) features like Mean, Median, Energy, Correlation, Bone
Mineral Density (BMD) and etc. After finding all the features it
stores in the database. This dataset is trained with inflamed and noninflamed
values and with the help of neural network all the new
images are checked properly for their status and Rough set is
implemented for further reduction.