The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

This paper aims to provide an interpretation of artificial neural networks (ANNs) and explore some of its implications. The interpretation views ANNs as a memory which encodes instances of experience. An experiment explores the behavior of encoding and retrieval of instances from memory. A localised representation ANN is created that allows control over encoding and retrieved memory sample size and is experimented with using the MNIST digits dataset. The relationship between input familiarity, conflict within retrieved samples, and error rates is described and demonstrated to be an effective driver for memory encoding. Results indicate that selective encoding and retrieval samples that allow detection of memory conflicts produce optimal performance, and that error rates are normally distributed with input familiarity and conflict. By using input familiarity and sample consistency to guide memory encoding, the number of encoding trials on the dataset were reduced to 18.33% of the training data while maintaining good recognition performance on the test data.

School-Based Intervention for Academic Achievement: Targeting Cognitive, Motivational and Affective Factors

Outcome in any learning process should target three goals – propelling the underachiever’s engagement in the learning process, enhancing the drive to achieve, and modifying attitudes and beliefs in his/her capabilities. An intervention study with a three-pronged approach incorporating self-regulatory training targeting three categories of strategies – cognitive, metacognitive and motivational – was designed adopting the before and after control-experimental group design. The evaluation of the training process was based on pre- and post-intervention measures obtained through three indices of measurement – academic scores based on grades on school examinations and comprehension tests, affective variables scores and level of strategy use obtained through responses on scales and questionnaires, and content analysis of subjective responses to open-ended probes. The evaluation relied on three sources – student, teacher and parent. The t-test results for the experimental and control groups on the pre- and post-intervention measurements indicate a significant increase on comprehension tasks for the experimental group. Though statistically significant difference was not found on the school examination scores for the experimental group, there was considerable decline in performance for the control group. Analysis of covariance (ANCOVA) was applied on the scores obtained on affective variables, namely, self-esteem, personal achievement goals, personal ego goals, personal task goals, and locus of control. The experimental group showed increase in personal achievement goals and personal ego goals as compared to the control group. Responses given by the experimental group to the open-ended probes on causal attributions indicated a considerable shift from external to internal causes when moving from the pre- to post-intervention stage. ANCOVA results revealed significantly higher use of learning strategies inclusive of mental learning strategies, behavioral learning strategies, self-regulatory strategies, and an improvement in study orientation encompassing study habits and study attitudes among the experimental group students. Parents and teachers reported significant progressive transformation towards constructive engagement with study material and self-imposed regulation. The implications of this study are three-fold: firstly, strategies training (cognitive, metacognitive and motivational) should be embedded into daily classroom routine; secondly, scaffolding by teachers through activities based on curriculum will eventually enable students to rely more on their own judgements of effective strategy use; thirdly, enhanced confidence will radiate to the affective aspects with enduring effects on other domains of life as well. The cyclic nature of the interaction between utilizing one’s resources, managing effort and regulating emotions forms the foundation for academic achievement.

Chinese Agricultural Business in Russia: Lessons and Experiences

Against the background of President Xi Jinping and Vladimir Putin hailing economics at the heart of their bilateral relationship, Putin conveyed that economic cooperation and trade are important to the revitalization of China and Russia. Likewise, President Xi Jinping noted that Russia and China bask in unprecedented great confidence and collaboration. Such amicable relationships may translate into enhanced economic cooperation and Chinese foreign investment in Russia. This paper employed a retrospective review and attempted to analyze Chinese agricultural engagement in Russian Far East, in addition to examining what was dubbed as land grabbing in Russia, probing into the political, economics, and human dimensions on the land debate. Such an analysis is significant as it contributes to the literature on foreign investment in agriculture.

The COVID-19 Pandemic: Lessons Learned in Promoting Student Internationalisation

In higher education, a great degree of importance is placed on the internationalisation of the student experience. This is seen as a valuable contributor to elements such as building confidence, broadening knowledge, creating networks, and connections and enhancing employability for current students who will become the next generation of managers in technology and business. The COVID-19 pandemic has affected all areas of people’s lives. The limitations of travel coupled with the fears and concerns generated by the health risks have dramatically reduced the opportunity for students to engage with this agenda. Institutions of higher education have been required to rethink fundamental aspects of their business model from recruitment and enrolment, through learning approaches, assessment methods and the pathway to employment. This paper presents a case study which focuses on student mobility and how the physical experience of being in another country either to study, to work, to volunteer or to gain cultural and social enhancement has of necessity been replaced by alternative approaches. It considers trans-national education as an alternative to physical study overseas, virtual mobility and internships as an alternative to international work experience and adopting collaborative on-line projects as an alternative to in-person encounters. The paper concludes that although these elements have been adopted to address the current situation, the lessons learnt and the feedback gained suggests that they have contributed successfully in new and sometimes unexpected ways, and that they will persist beyond the present to become part of the "new normal" for the future. That being the case, senior leaders of institutions of higher education will be required to revisit their international plans and to rewrite their international strategies to take account of and build upon these changes.

Assessing the Theoretical Suitability of Sentinel-2 and WorldView-3 Data for Hydrocarbon Mapping of Spill Events, Using HYSS

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization were only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the Hydrocarbon Spectra Slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven different hydrocarbon oils (crude and refined oil) taken on 10 different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Classification of Extreme Ground-Level Ozone Based on Generalized Extreme Value Model for Air Monitoring Station

Higher ground-level ozone (GLO) concentration adversely affects human health, vegetations as well as activities in the ecosystem. In Malaysia, most of the analysis on GLO concentration are carried out using the average value of GLO concentration, which refers to the centre of distribution to make a prediction or estimation. However, analysis which focuses on the higher value or extreme value in GLO concentration is rarely explored. Hence, the objective of this study is to classify the tail behaviour of GLO using generalized extreme value (GEV) distribution estimation the return level using the corresponding modelling (Gumbel, Weibull, and Frechet) of GEV distribution. The results show that Weibull distribution which is also known as short tail distribution and considered as having less extreme behaviour is the best-fitted distribution for four selected air monitoring stations in Peninsular Malaysia, namely Larkin, Pelabuhan Kelang, Shah Alam, and Tanjung Malim; while Gumbel distribution which is considered as a medium tail distribution is the best-fitted distribution for Nilai station. The return level of GLO concentration in Shah Alam station is comparatively higher than other stations. Overall, return levels increase with increasing return periods but the increment depends on the type of the tail of GEV distribution’s tail. We conduct this study by using maximum likelihood estimation (MLE) method to estimate the parameters at four selected stations in Peninsular Malaysia. Next, the validation for the fitted block maxima series to GEV distribution is performed using probability plot, quantile plot and likelihood ratio test. Profile likelihood confidence interval is tested to verify the type of GEV distribution. These results are important as a guide for early notification on future extreme ozone events.

The Art of Leadership: Skills to Inspire the Team to Overcome Project Challenges and Achieve Their Goals

This paper highlights skills that a leader needs to acquire to lead a team successfully. With an appropriate vision and strategy, a team can be inspired, influenced and easily led. The importance of setting codes of conduct and establishing mutual agreements between the team members can help in minimizing issues and improving overall productivity. Leadership skills include the power of questioning (PoQ), effective communication, identification of team member responsibilities, and assessment of self and the team. This paper will highlight the impact of good leadership on work progress and overall team performance. The paper explains how leaders make correct decisions by avoiding hasty actions that could generate new errors, mistakes, and issues. The importance of positive expectations for the team is addressed in this paper that could result in efficient control of the work with better outcomes.

A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Solid State Drive End to End Reliability Prediction, Characterization and Control

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Exploring the Perspective of Service Quality in mHealth Services during the COVID-19 Pandemic

The impact of COVID-19 has a significant effect on all sectors of society globally. Health information technology (HIT) has become an effective health strategy in this age of distancing. In this regard, Mobile Health (mHealth) plays a critical role in managing patient and provider workflows during the COVID-19 pandemic. Therefore, the users' perception of service quality about mHealth services plays a significant role in shaping confidence and subsequent behaviors regarding the mHealth users' intention of use. This study's objective was to explore levels of user attributes analyzed by a qualitative method of how health practitioners and patients are satisfied or dissatisfied with using mHealth services; and analyzed the users' intention in the context of Taiwan during the COVID-19 pandemic. This research explores the experienced usability of a mHealth services during the Covid-19 pandemic. This study uses qualitative methods that include in-depth and semi-structured interviews that investigate participants' perceptions and experiences and the meanings they attribute to them. The five cases consisted of health practitioners, clinic staff, and patients' experiences using mHealth services. This study encourages participants to discuss issues related to the research question by asking open-ended questions, usually in one-to-one interviews. The findings show the positive and negative attributes of mHealth service quality. Hence, the significant importance of patients' and health practitioners' issues on several dimensions of perceived service quality is system quality, information quality, and interaction quality. A concept map for perceptions regards to emergency uses' intention of mHealth services process is depicted. The findings revealed that users pay more attention to "Medical care", "ease of use" and "utilitarian benefits" and have less importance for "Admissions and Convenience" and "Social influence". To improve mHealth services, the mHealth providers and health practitioners should better manage users' experiences to enhance mHealth services. This research contributes to the understanding of service quality issues in mHealth services during the COVID-19 pandemic.

The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination

The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.

An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators

The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.

Podcasting as an Instructional Method: Case Study of a School Psychology Class

There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.

A Retrospective Cross-Sectional Study on the Prevalence and Factors Associated with Virological Non-Suppression among HIV-Positive Adult Patients on Antiretroviral Therapy in Woliso Town, Oromia, Ethiopia

Background: HIV virological failure still remains a problem in HV/AIDS treatment and care. This study aimed to describe the prevalence and identify the factors associated with viral non-suppression among HIV-positive adult patients on antiretroviral therapy in Woliso Town, Oromia, Ethiopia. Methods: A retrospective cross-sectional study was conducted among 424 HIV-positive patient’s attending antiretroviral therapy (ART) in Woliso Town during the period from August 25, 2020 to August 30, 2020. Data collected from patient medical records were entered into Epi Info version and exported to SPSS version 21.0 for analysis. Logistic regression analysis was done to identify factors associated with viral load non-suppression, and statistical significance of odds ratios were declared using 95% confidence interval and p-value < 0.05. Results: A total of 424 patients were included in this study. The mean age (± SD) of the study participants was 39.88 (± 9.995) years. The prevalence of HIV viral load non-suppression was 55 (13.0%) with 95% CI (9.9-16.5). Second-line ART treatment regimen (Adjusted Odds Ratio (AOR) = 8.98, 95% Confidence Interval (CI): 2.64, 30.58) and routine viral load testing (AOR = 0.01, 95% CI: 0.001, 0.02) were significantly associated with virological non-suppression. Conclusion: Virological non-suppression was high, which hinders the achievement of the third global 95 target. The second-line regimen and routine viral load testing were significantly associated with virological non-suppression. It suggests the need to assess the effectiveness of antiretroviral drugs for epidemic control. It also clearly shows the need to decentralize third-line ART treatment for those patients in need.

Enhancement of Accountability within the South African Public Sector: Knowledge Gained from the Case of a National Commissioner of the South African Police Service

The paper scrutinizes the literature on accountability and non-accountability, and then presents an analysis of a South African case which demonstrated consequences of a lack of accountability. Ethical conduct displayed by members of the public sector is integral to creating a sustainable democratic government, which upholds the constitutional tenets of accountability, transparency and professional ethicality. Furthermore, a true constitutional democracy emphasises and advocates the notion of service leadership that nurtures public participation and engages with citizens in a positive manner. Ethical conduct and accountability in the public sector earns public trust; hence these are key principles in good governance. Yet, in the years since the advent of democracy in South Africa, the government has been plagued by rampant corruption and mal-administration by public officials and politicians in leadership positions. The control measures passed by government in an attempt to ensure ethicality and accountability within the public sector include codes of ethics, rules of conduct and the enactment of legislation. These are intended to shape the mindset of members of the public sector, with the ultimate aim of an efficient, effective, ethical, responsive and accountable public service. The purpose of the paper is to analyse control systems and accountability within the public sector and to present reasons for non-accountability by means of a selected case study. The selected case study is the corruption trial of Jackie Selebi, who served as National Commissioner of the South African Police Service but was dismissed from the post. The reasons for non-accountability in the public sector as well as recommendations based on the findings to enhance accountability will be undertaken. The case study demonstrates the experience and impact of corruption and/or mal-administration, as a result of a lack of accountability, which has contributed to the increasing loss of confidence in political leadership in the country as elsewhere in the world. The literature is applied to the erstwhile National Commissioner of the South African Police Service and President of Interpol, as a case study of non-accountability.

Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

The Impact of Political Events on National Archaeological Heritage and Tourism Industry: Study Case of Egypt after January 25th, 2011

Tourism plays an essential role in supporting the National Economy. Egypt was ranked as one of the most attractive touristic destinations worldwide. Tourism as a service sector affects political events and unstable conditions. Within the revolution of January 25th, 2011, tourism became below standards, and the archeological heritage sites were subject to threat. Because of the political tension and social instability, Egypt's tourism sector has drastically dropped. Currently, Egypt is working on overcoming the crisis caused by political unrest. However, it is expected to take a long time to get back to where it was, especially in terms of regaining the confidence of travelers in the country's ability to guarantee and maintain security and stability. Recently, many great projects have been done, such as; New Administrative Cairo Capital, New Suez Canal logistic project, New City of Al Alamin, New Grand Egyptian Museum, as well as other great projects that reflect positively on the tourism industry and archaeological heritage development in Egypt.

Impact of VARK Learning Model at Tertiary Level Education

Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.

A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria

This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.