Pig Husbandry and Solid Manures in a Commercial Pig Farm in Beijing, China

Porcine production in China represents approximately the 50% of the worldwide pig production. Information about pig husbandry characteristics in China and manure properties from sows to fatteners in intensive pig farms are not broadly available for scientific studies as it is a time consuming, expensive task and highly inaccessible. This study provides a report about solid pig manures (28% dry matter) in a commercial pig farm located in the peri-urban area of Beijing as well as a general overview of the current pig husbandry techniques including pig breeds, feeds, diseases, housing as well as pig manure and wastewater disposal. The main results are intended to serve as a literature source for young scientists in order to understand the main composition of pig manures as well as to identify the husbandry techniques applied in an intensive pig farm in Beijing.

Neuro-Hybrid Models for Automotive System Identification

In automotive systems almost all steps concerning the calibration of several control systems, e.g., low idle governor or boost pressure governor, are made with the vehicle because the timeto- production and cost requirements on the projects do not allow for the vehicle analysis necessary to build reliable models. Here is presented a procedure using parametric and NN (neural network) models that enables the generation of vehicle system models based on normal ECU engine control unit) vehicle measurements. These models are locally valid and permit pre and follow-up calibrations so that, only the final calibrations have to be done with the vehicle.

Post Mining- Discovering Valid Rules from Different Sized Data Sources

A big organization may have multiple branches spread across different locations. Processing of data from these branches becomes a huge task when innumerable transactions take place. Also, branches may be reluctant to forward their data for centralized processing but are ready to pass their association rules. Local mining may also generate a large amount of rules. Further, it is not practically possible for all local data sources to be of the same size. A model is proposed for discovering valid rules from different sized data sources where the valid rules are high weighted rules. These rules can be obtained from the high frequency rules generated from each of the data sources. A data source selection procedure is considered in order to efficiently synthesize rules. Support Equalization is another method proposed which focuses on eliminating low frequency rules at the local sites itself thus reducing the rules by a significant amount.

Fusing Local Binary Patterns with Wavelet Features for Ethnicity Identification

Ethnicity identification of face images is of interest in many areas of application, but existing methods are few and limited. This paper presents a fusion scheme that uses block-based uniform local binary patterns and Haar wavelet transform to combine local and global features. In particular, the LL subband coefficients of the whole face are fused with the histograms of uniform local binary patterns from block partitions of the face. We applied the principal component analysis on the fused features and managed to reduce the dimensionality of the feature space from 536 down to around 15 without sacrificing too much accuracy. We have conducted a number of preliminary experiments using a collection of 746 subject face images. The test results show good accuracy and demonstrate the potential of fusing global and local features. The fusion approach is robust, making it easy to further improve the identification at both feature and score levels.

Effect of Derating Factors on Photovoltaics under Climatic Conditions of Istanbul

As known that efficiency of photovoltaic cells is not high as desired level. Efficiency of PVs could be improved by selecting convenient locations that have high solar irradiation, sunshine duration, mild temperature, low level air pollution and dust concentration. Additionally, some environmental parameters called derating factors effect to decrease PV efficiencies such as cloud, high temperature, aerosol optical depth, high dust concentration, shadow, snow, humidity etc. In this paper, all parameters that effect PV efficiency are considered in detail under climatic conditions of Istanbul. A 750 Wp PV system with measurement devices is constructed in Maslak campus of Istanbul Technical University.

Structural and Optical Properties ofInxAlyGa1-x-yN Quaternary Alloys

Quaternary InxAlyGa1-x-yN semiconductors have attracted much research interest because the use of this quaternary offer the great flexibility in tailoring their band gap profile while maintaining their lattice-matching and structural integrity. The structural and optical properties of InxAlyGa1-x-yN alloys grown by molecular beam epitaxy (MBE) is presented. The structural quality of InxAlyGa1-x-yN layers was characterized using high-resolution X-ray diffraction (HRXRD). The results confirm that the InxAlyGa1-x-yN films had wurtzite structure and without phase separation. As the In composition increases, the Bragg angle of the (0002) InxAlyGa1-x-yN peak gradually decreases, indicating the increase in the lattice constant c of the alloys. FWHM of (0002) InxAlyGa1-x-yN decreases with increasing In composition from 0 to 0.04, that could indicate the decrease of quality of the samples due to point defects leading to non-uniformity of the epilayers. UV-VIS spectroscopy have been used to study the energy band gap of InxAlyGa1-x-yN. As the indium (In) compositions increases, the energy band gap decreases. However, for InxAlyGa1-x-yN with In composition of 0.1, the band gap shows a sudden increase in energy. This is probably due to local alloy compositional fluctuations in the epilayer. The bowing parameter which appears also to be very sensitive on In content is investigated and obtained b = 50.08 for quaternary InxAlyGa1-x-yN alloys. From photoluminescence (PL) measurement, green luminescence (GL) appears at PL spectrum of InxAlyGa1-x-yN, emitted for all x at ~530 nm and it become more pronounced as the In composition (x) increased, which is believed cause by gallium vacancies and related to isolated native defects.

Heat Transfer and Frictional Characteristics in Rectangular Channel with Inclined Perforated Baffles

A numerical study on the turbulent flow and heat transfer characteristics in the rectangular channel with different types of baffles is carried out. The inclined baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of 5o. Reynolds number is varied between 23,000 and 57,000. The SST turbulence model is applied in the calculation. The validity of the numerical results is examined by the experimental data. The numerical results of the flow field depict that the flow patterns around the different baffle type are entirely different and these significantly affect the local heat transfer characteristics. The heat transfer and friction factor characteristics are significantly affected by the perforation density of the baffle plate. It is found that the heat transfer enhancement of baffle type II (3 hole baffle) has the best values.

Performance Evaluation of Iris Region Detection and Localization for Biometric Identification System

The iris recognition technology is the most accurate, fast and less invasive one compared to other biometric techniques using for example fingerprints, face, retina, hand geometry, voice or signature patterns. The system developed in this study has the potential to play a key role in areas of high-risk security and can enable organizations with means allowing only to the authorized personnel a fast and secure way to gain access to such areas. The paper aim is to perform the iris region detection and iris inner and outer boundaries localization. The system was implemented on windows platform using Visual C# programming language. It is easy and efficient tool for image processing to get great performance accuracy. In particular, the system includes two main parts. The first is to preprocess the iris images by using Canny edge detection methods, segments the iris region from the rest of the image and determine the location of the iris boundaries by applying Hough transform. The proposed system tested on 756 iris images from 60 eyes of CASIA iris database images.

Vortex Shedding on Combined Bodies at Incidence to a Uniform Air Stream

Vortex-shedding phenomenon of the flow around combined two bodies having various geometries and sizes has been investigated experimentally in the Reynolds number range between 4.1x103 and 1.75x104. To see the effect of the rotation of the bodies on the vortex shedding, the combined bodies were rotated from 0° to 180°. The combined models have a cross section composing of a main circular cylinder and an attached circular or square cylinder. Results have shown that Strouhal numbers for two cases were changed considerably with the angle of incidence, while it was found to be largely independent of Reynolds number at 150. Characteristics of the vortex formation region and location of flow attachments, reattachments, and separations were observed by means of the flow visualizations. Depending on the inclination angle the effects of flow attachment, separation and reattachment on vortex-shedding phenomenon have been discussed.

Transformation Building of Micro- Entrepreneurs: A Conceptual Model

The majority of micro-entrepreneurs in Malaysia operate very small-scaled business activities such as food stalls, burger stalls, night market hawkers, grocery stores, constructions, rubber and oil palm small holders, and other agro-based services and activities. Why are they venturing into entrepreneurship - is it for survival, out of interest or due to encouragement and assistance from the local government? And why is it that some micro-entrepreneurs are lagging behind in entrepreneurship, and what do they need to rectify this situation so that they are able to progress further? Furthermore, what are the skills that the micro entrepreneurs should developed to transform them into successful micro-enterprises and become small and medium-sized enterprises (SME)? This paper proposes a 7-Step approach that can serve as a basis for identification of critical entrepreneurial success factors that enable policy makers, practitioners, consultants, training managers and other agencies in developing tools to assist micro business owners. This paper also highlights the experience of one of the successful companies in Malaysia that has transformed from micro-enterprise to become a large organization in less than 10 years.

An Improved Resource Discovery Approach Using P2P Model for Condor: A Grid Middleware

Resource Discovery in Grids is critical for efficient resource allocation and management. Heterogeneous nature and dynamic availability of resources make resource discovery a challenging task. As numbers of nodes are increasing from tens to thousands, scalability is essentially desired. Peer-to-Peer (P2P) techniques, on the other hand, provide effective implementation of scalable services and applications. In this paper we propose a model for resource discovery in Condor Middleware by using the four axis framework defined in P2P approach. The proposed model enhances Condor to incorporate functionality of a P2P system, thus aim to make Condor more scalable, flexible, reliable and robust.

MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption

This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.

Using Morphological and Microsatellite (SSR) Markers to Assess the Genetic Diversity in Alfalfa (Medicago sativa L.)

Utilization of diverse germplasm is needed to enhance the genetic diversity of cultivars. The objective of this study was to evaluate the genetic relationships of 98 alfalfa germplasm accessions using morphological traits and SSR markers. From the 98 tested populations, 81 were locals originating in Europe, 17 were introduced from USA, Australia, New Zealand and Canada. Three primers generated 67 polymorphic bands. The average polymorphic information content (PIC) was very high (> 0.90) over all three used primer combinations. Cluster analysis using Unweighted Pair Group Method with Arithmetic Means (UPGMA) and Jaccard´s coefficient grouped the accessions into 2 major clusters with 4 sub-clusters with no correlation between genetic and morphological diversity. The SSR analysis clearly indicated that even with three polymorphic primers, reliable estimation of genetic diversity could be obtained.

The Rank-scaled Mutation Rate for Genetic Algorithms

A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.

A Practical Scheme for Transmission Loss Allocation to Generators and Loads in Restructured Power Systems

This paper presents a practical scheme that can be used for allocating the transmission loss to generators and loads. In this scheme first the share of a generator or load on the current through a branch is determined using Z-bus modified matrix. Then the current components are decomposed and the branch loss allocation is obtained. A motivation of proposed scheme is to improve the results of Z-bus method and to reach more fair allocation. The proposed scheme has been implemented and tested on several networks. To achieve practical and applicable results, the proposed scheme is simulated and compared on the transmission network (400kv) of Khorasan region in Iran and the 14-bus standard IEEE network. The results show that the proposed scheme is comprehensive and fair to allocating the energy losses of a power market to its participants.

Local Perspectives on Climate Change Mitigation and Sustainability of Clean Development Mechanism (CDM) Project: A Case Study in Thailand

Global climate change has become the preeminent threat to human security in the 21st century. From mitigation perspective, this study aims to evaluate the performance of biogas renewable project under clean development mechanism activities (namely Korat-Waste-to-Energy) in Thailand and to assess local perceptions towards the significance of climate change mitigation and sustainability of such project in their community. Questionnaire was developed based on the national sustainable development criteria and was distributed among systematically selected households within project boundaries (n=260). Majority of the respondents strongly agreed with the reduction of odor problems (81%) and air pollution (76%). However, they were unsure about greenhouse gas reduction from such project and ignorant about the key issues of climate change. A lesson learned suggested that there is a need to further investigate the possible socio-psychological barriers may significantly shape public perception and understandings of climate change in the local context.

Developing Forecasting Tool for Humanitarian Relief Organizations in Emergency Logistics Planning

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability distributions. The estimates of the parameters are used to calculate natural disaster forecasts. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Agents Network on a Grid: An Approach with the Set of Circulant Operators

In this work we present some matrix operators named circulant operators and their action on square matrices. This study on square matrices provides new insights into the structure of the space of square matrices. Moreover it can be useful in various fields as in agents networking on Grid or large-scale distributed self-organizing grid systems.

Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems

In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.

Physical Modeling of Oil Well Fire Extinguishing Using a Turbojet on a Barge

There are reports of gas and oil wells fire due to different accidents. Many different methods are used for fire fighting in gas and oil industry. Traditional fire extinguishing techniques are mostly faced with many problems and are usually time consuming and needs lots of equipments. Besides, they cause damages to facilities, and create health and environmental problems. This article proposes innovative approach in fire extinguishing techniques in oil and gas industry, especially applicable for burning oil wells located offshore. Fire extinguishment employing a turbojet is a novel approach which can help to extinguishment the fire in short period of time. Divergent and convergent turbojets modeled in laboratory scale along with a high pressure flame were used. Different experiments were conducted to determine the relationship between output discharges of trumpet and oil wells. The results were corrected and the relationship between dimensionless parameters of flame and fire extinguishment distances and also the output discharge of turbojet and oil wells in specified distances are demonstrated by specific curves.