The Countabilities of Soft Topological Spaces

Soft topological spaces are considered as mathematical tools for dealing with uncertainties, and a fuzzy topological space is a special case of the soft topological space. The purpose of this paper is to study soft topological spaces. We introduce some new concepts in soft topological spaces such as soft first-countable spaces, soft second-countable spaces and soft separable spaces, and some basic properties of these concepts are explored.

Cognitive Landscape of Values – Understanding the Information Contents of Mental Representations

The values of managers and employees in organizations are phenomena that have captured the interest of researchers at large. Despite this attention, there continues to be a lack of agreement on what values are and how they influence individuals, or how they are constituted in individuals- mind. In this article content-based approach is presented as alternative reference frame for exploring values. In content-based approach human thinking in different contexts is set at the focal point. Differences in valuations can be explained through the information contents of mental representations. In addition to the information contents, attention is devoted to those cognitive processes through which mental representations of values are constructed. Such informational contents are in decisive role for understanding human behavior. By applying content-based analysis to an examination of values as mental representations, it is possible to reach a deeper to the motivational foundation of behaviors, such as decision making in organizational procedures, through understanding the structure and meanings of specific values at play.

Granulation using Clustering and Rough Set Theory and its Tree Representation

Granular computing deals with representation of information in the form of some aggregates and related methods for transformation and analysis for problem solving. A granulation scheme based on clustering and Rough Set Theory is presented with focus on structured conceptualization of information has been presented in this paper. Experiments for the proposed method on four labeled data exhibit good result with reference to classification problem. The proposed granulation technique is semi-supervised imbibing global as well as local information granulation. To represent the results of the attribute oriented granulation a tree structure is proposed in this paper.

Takagi-Sugeno Fuzzy Control of Induction Motor

This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.

The Robust Clustering with Reduction Dimension

A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paper

Smart Surveillance using PDA

The aim of this research is to develop a fast and reliable surveillance system based on a personal digital assistant (PDA) device. This is to extend the capability of the device to detect moving objects which is already available in personal computers. Secondly, to compare the performance between Background subtraction (BS) and Temporal Frame Differencing (TFD) techniques for PDA platform as to which is more suitable. In order to reduce noise and to prepare frames for the moving object detection part, each frame is first converted to a gray-scale representation and then smoothed using a Gaussian low pass filter. Two moving object detection schemes i.e., BS and TFD have been analyzed. The background frame is updated by using Infinite Impulse Response (IIR) filter so that the background frame is adapted to the varying illuminate conditions and geometry settings. In order to reduce the effect of noise pixels resulting from frame differencing morphological filters erosion and dilation are applied. In this research, it has been found that TFD technique is more suitable for motion detection purpose than the BS in term of speed. On average TFD is approximately 170 ms faster than the BS technique

Two Undetectable On-line Dictionary Attacks on Debiao et al.’s S-3PAKE Protocol

In 2011, Debiao et al. pointed out that S-3PAKE protocol proposed by Lu and Cao for password-authenticated key exchange in the three-party setting is vulnerable to an off-line dictionary attack. Then, they proposed some countermeasures to eliminate the security vulnerability of the S-3PAKE. Nevertheless, this paper points out their enhanced S-3PAKE protocol is still vulnerable to undetectable on-line dictionary attacks unlike their claim.

Mutually Independent Hamiltonian Cycles of Cn x Cn

In a graph G, a cycle is Hamiltonian cycle if it contain all vertices of G. Two Hamiltonian cycles C_1 = 〈u_0, u_1, u_2, ..., u_{n−1}, u_0〉 and C_2 = 〈v_0, v_1, v_2, ..., v_{n−1}, v_0〉 in G are independent if u_0 = v_0, u_i = ̸ v_i for all 1 ≤ i ≤ n−1. In G, a set of Hamiltonian cycles C = {C_1, C_2, ..., C_k} is mutually independent if any two Hamiltonian cycles of C are independent. The mutually independent Hamiltonicity IHC(G), = k means there exist a maximum integer k such that there exists k-mutually independent Hamiltonian cycles start from any vertex of G. In this paper, we prove that IHC(C_n × C_n) = 4, for n ≥ 3.

Using the Combined Model of PROMETHEE and Fuzzy Analytic Network Process for Determining Question Weights in Scientific Exams through Data Mining Approach

Need for an appropriate system of evaluating students- educational developments is a key problem to achieve the predefined educational goals. Intensity of the related papers in the last years; that tries to proof or disproof the necessity and adequacy of the students assessment; is the corroborator of this matter. Some of these studies tried to increase the precision of determining question weights in scientific examinations. But in all of them there has been an attempt to adjust the initial question weights while the accuracy and precision of those initial question weights are still under question. Thus In order to increase the precision of the assessment process of students- educational development, the present study tries to propose a new method for determining the initial question weights by considering the factors of questions like: difficulty, importance and complexity; and implementing a combined method of PROMETHEE and fuzzy analytic network process using a data mining approach to improve the model-s inputs. The result of the implemented case study proves the development of performance and precision of the proposed model.

Extremal Properties of Generalized Class of Close-to-convex Functions

Let Gα ,β (γ ,δ ) denote the class of function f (z), f (0) = f ′(0)−1= 0 which satisfied e δ {αf ′(z)+ βzf ′′(z)}> γ i Re in the open unit disk D = {z ∈ı : z < 1} for some α ∈ı (α ≠ 0) , β ∈ı and γ ∈ı (0 ≤γ 0 . In this paper, we determine some extremal properties including distortion theorem and argument of f ′( z ) .

Experimental Study of Upsetting and Die Forging with Controlled Impact

The results from experimental research of deformation by upsetting and die forging of lead specimens wit controlled impact are presented. Laboratory setup for conducting the investigations, which uses cold rocket engine operated with compressed air, is described. The results show that when using controlled impact is achieving greater plastic deformation and consumes less impact energy than at ordinary impact deformation process.

The Contraction Point for Phan-Thien/Tanner Model of Tube-Tooling Wire-Coating Flow

The simulation of extrusion process is studied widely in order to both increase products and improve quality, with broad application in wire coating. The annular tube-tooling extrusion was set up by a model that is termed as Navier-Stokes equation in addition to a rheological model of differential form based on singlemode exponential Phan-Thien/Tanner constitutive equation in a twodimensional cylindrical coordinate system for predicting the contraction point of the polymer melt beyond the die. Numerical solutions are sought through semi-implicit Taylor-Galerkin pressurecorrection finite element scheme. The investigation was focused on incompressible creeping flow with long relaxation time in terms of Weissenberg numbers up to 200. The isothermal case was considered with surface tension effect on free surface in extrudate flow and no slip at die wall. The Stream Line Upwind Petrov-Galerkin has been proposed to stabilize solution. The structure of mesh after die exit was adjusted following prediction of both top and bottom free surfaces so as to keep the location of contraction point around one unit length which is close to experimental results. The simulation of extrusion process is studied widely in order to both increase products and improve quality, with broad application in wire coating. The annular tube-tooling extrusion was set up by a model that is termed as Navier-Stokes equation in addition to a rheological model of differential form based on single-mode exponential Phan- Thien/Tanner constitutive equation in a two-dimensional cylindrical coordinate system for predicting the contraction point of the polymer melt beyond the die. Numerical solutions are sought through semiimplicit Taylor-Galerkin pressure-correction finite element scheme. The investigation was focused on incompressible creeping flow with long relaxation time in terms of Weissenberg numbers up to 200. The isothermal case was considered with surface tension effect on free surface in extrudate flow and no slip at die wall. The Stream Line Upwind Petrov-Galerkin has been proposed to stabilize solution. The structure of mesh after die exit was adjusted following prediction of both top and bottom free surfaces so as to keep the location of contraction point around one unit length which is close to experimental results.

The Concept of Place and Sense of Place In Architectural Studies

Place is a where dimension formed by people-s relationship with physical settings, individual and group activities, and meanings. 'Place Attachment', 'Place Identity'and 'Sense of Place' are some concepts that could describe the quality of people-s relationships with a place. The concept of Sense of place is used in studying human-place bonding, attachment and place meaning. Sense of Place usually is defined as an overarching impression encompassing the general ways in which people feel about places, senses it, and assign concepts and values to it. Sense of place is highlighted in this article as one of the prevailing concepts among place-based researches. Considering dimensions of sense of place has always been beneficial for investigating public place attachment and pro-environmental attitudes towards these places. The creation or preservation of Sense of place is important in maintaining the quality of the environment as well as the integrity of human life within it. While many scholars argued that sense of place is a vague concept, this paper will summarize and analyze the existing seminal literature. Therefore, in this paper first the concept of Sense of place and its characteristics will be examined afterward the scales of Sense of place will be reviewed and the factors that contribute to form Sense of place will be evaluated and finally Place Attachment as an objective dimension for measuring the sense of place will be described.

Knowledge Continuity as a Part of Business Continuity Management

Today the intangible assets are the capital of knowledge and are the most important and the most valuable resource for organizations. All employees have knowledge independently of the kind of jobs they do. Knowledge is thus an asset, which influences business operations. The objective of this article is to identify knowledge continuity as an objective of business continuity management. The article has been prepared based on the analysis of secondary sources and the evaluation of primary sources of data by means of a quantitative survey conducted in the Czech Republic. The conclusion of the article is that organizations that apply business continuity management do not focus on the preservation of the knowledge of key employees. Organizations ensure knowledge continuity only intuitively, on a random basis, non-systematically and discontinuously. The non-ensuring of knowledge continuity represents a threat of loss of key knowledge for organizations and can also negatively affect business continuity.

Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm

Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.

Mining Correlated Bicluster from Web Usage Data Using Discrete Firefly Algorithm Based Biclustering Approach

For the past one decade, biclustering has become popular data mining technique not only in the field of biological data analysis but also in other applications like text mining, market data analysis with high-dimensional two-way datasets. Biclustering clusters both rows and columns of a dataset simultaneously, as opposed to traditional clustering which clusters either rows or columns of a dataset. It retrieves subgroups of objects that are similar in one subgroup of variables and different in the remaining variables. Firefly Algorithm (FA) is a recently-proposed metaheuristic inspired by the collective behavior of fireflies. This paper provides a preliminary assessment of discrete version of FA (DFA) while coping with the task of mining coherent and large volume bicluster from web usage dataset. The experiments were conducted on two web usage datasets from public dataset repository whereby the performance of FA was compared with that exhibited by other population-based metaheuristic called binary Particle Swarm Optimization (PSO). The results achieved demonstrate the usefulness of DFA while tackling the biclustering problem.

A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients

Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.

Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment

The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.

Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

The Effect of Cyclic Speed on the Wear Properties of Molybdenum Disulfide Greases under Extreme Pressure Loading Using 4 Balls Wear Tests

The relationship between different types of Molybdenum disulfide greases under extreme pressure loading and different speed situations have been studied using Design of Experiment (DOE) under 1200rpm steady state rotational speed and cyclic frequencies between 2400 and 1200rpm using a Plint machine software to set up the different rotational speed situations.  Research described here is aimed at providing good friction and wear performance while optimizing cyclic frequencies and MoS2 concentration due to the recent concern about grease behavior in extreme pressure applications. Extreme load of 785 Newton was used in conjunction with different cyclic frequencies (2400rpm -3.75min, 1200rpm -7.5min, 2400rpm -3.75min, 1200rpm -7.5min), to examine lithium based grease with and without MoS2 for equal number of revolutions, and a total run of 36000 revolutions; then compared to 1200rpm steady speed for the same total number of revolutions. 4 Ball wear tester was utilized to run large number of experiments randomly selected by the DOE software. The grease was combined with fine grade MoS2 or technical grade then heated to 750C and the wear scar width was collected at the end of each test. DOE model validation results verify that the data were very significant and can be applied to a wide range of extreme pressure applications. Based on simulation results and Scanning Electron images (SEM), it has been found that wear was largely dependent on the cyclic frequency condition. It is believed that technical grade MoS2 greases under faster cyclic speeds perform better and provides antiwear film that can resist extreme pressure loadings. Figures showed reduced wear scars width and improved frictional values.