A Dynamic Decision Model for Vertical Handoffs across Heterogeneous Wireless Networks

The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best" available network at “best" time to reduce the unnecessary handoffs. This paper proposes a dynamic decision model to decide the “best" network at “best" time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best" network at “best" time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)" of network and “velocity" of mobile station simultaneously with static factors like Usage Expense, Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improve the whole system performance by reducing the unnecessary handoffs.

Effects of used Engine Oil in Reinforced Concrete Beams: The Structural Behaviour

In the modern construction practices, industrial wastes or by-products are largely used as raw materials in cement and concrete. These impart many benefits to the environment and bringabout an economic impact because the cost of waste disposal is constantly increasing due to strict environmental regulations. It was reported in literature that the leakage of oil onto concrete element in older cement grinding unit resulted in concrete with greater resistance to freezing and thawing. This effect was thought to be similar to adding an air-entraining chemical admixture to concrete. This paper presents an investigation on the load deflection behaviour and crack patterns of reinforced concrete (RC) beams subjected to four point loading. Ten 120x260x1900 mm beams were cast with 100% ordinary Portland cement (OPC) concrete, 20% fly ash (FA) and 20% rice husk ash (RHA) blended cement concrete. 0.15% dosage of admixtures (used engine oil, new engine oil, and superplasticizer) was used throughout the experiment. Results show that OPC and OPC/RHA RC beams containing used engine oil and superplasticizer exhibit higher capacity, 18-26% than their corresponding control mix.

Modelling of a Multi-Track Railway Level Crossing System Using Timed Petri Net

Petri Net being one of the most useful graphical tools for modelling complex asynchronous systems, we have used Petri Net to model multi-track railway level crossing system. The roadway has been augmented with four half-size barriers. For better control, a three stage control mechanism has been introduced to ensure that no road-vehicle is trapped on the level crossing. Timed Petri Net is used to include the temporal nature of the signalling system. Safeness analysis has also been included in the discussion section.

Towards an Integrated Proposal for Performance Measurement Indicators (Financial and Operational) in Advanced Production Practices

Starting with an analysis of the financial and operational indicators that can be found in the specialised literature, this study aims to contribute to improvements in the performance measurement systems used when the unit of analysis is the manufacturing plant. For this a search was done in the highest impact Journals of Production and Operations Management and Management Accounting , with the aim of determining the financial and operational indicators used to evaluate performance when Advanced Production Practices have been implemented, more specifically when the practices implemented are Total Quality Management, JIT/Lean Manufacturing and Total Productive Maintenance. This has enabled us to obtain a classification of the two types of indicators based on how much each is used. For the financial indicators we have also prepared a proposal that can be adapted to manufacturing plants- accounting features. In the near future we will propose a model that links practices implementation with financial and operational indicators and these two last with each other. We aim to will test this model empirically with the data obtained in the High Performance Manufacturing Project.

Chronic Consumer States Influencing Compulsive Consumption

Consumer behaviour analysis represents an important field of study in marketing. Particularly strategy development for marketing and communications will be more focused and effective when marketers have an understanding of the motivations, behaviour and psychology of consumers. While materialism has been found to be one of the important elements in consumer behaviour, compulsive consumption represents another aspect that has recently attracted more attention. This is because of the growing prevalence of dysfunctional buying that has raised concern in consumer societies. Present studies and analyses on origins and motivations of compulsive buying have mainly focused on either individual factors or groups of related factors and hence a need for a holistic view exists. This paper provides a comprehensive perspective on compulsive consumption and establishes relevant propositions keeping the family life cycle stages as a reference for the incidence of chronic consumer states and their influence on compulsive consumption.

Motivation and Expectation of Developers on Green Construction: A Conceptual View

Social cognitive theory explains the power to inaugurate change is determined by the mutual influence of personal proclivity and social factors which will shape ones- motivations and expectations. In construction industry, green concept offers an opportunity to leave a lighter footprint on the environment. This opportunity, however, has not been fully grasped by many countries. As such, venturing into green construction for many practitioners would be their maiden experience. Decision to venture into new practice such as green construction will be influenced by certain drivers. This paper explores these drivers which is further expanded into motivational factors and later becomes the platform upon which expectation for green construction stands. This theoretical concept of motivation and expectations, which is adapted from social cognitive theory, focus on developers- view because of their crucial role in green application. This conceptual framework, which serves as the basis for further research, will benefit the industry as it elucidate cognitive angles to attract more new entrants to green business.

Clubs Forming on Crazyvote -The Blurred Social Boundary Between Online Communities and the Real World

With the rapid growth and development of information and communication technology, the Internet has played a definite and irreplaceable role in people-s social lives in Taiwan like in other countries. In July 2008, on a general social website, an unexpected phenomenon was noticed – that there were more than one hundred users who started forming clubs voluntarily and having face-to-face gatherings for specific purposes. In this study, it-s argued whether or not teenagers- social contact on the Internet is involved in their life context, and tried to reveal the teenagers- social preferences, values, and needs, which merge with and influence teenagers- social activities. Therefore, the study conducts multiple user experience research methods, which include practical observations and qualitative analysis by contextual inquiries and in-depth interviews. Based on the findings, several design implications for software related to social interactions and cultural inheritance are offered. It is concluded that the inherent values of a social behaviors might be a key issue in developing computer-mediated communication or interaction designs in the future.

Modeling Brand Alliance Effects Professional Services

Various formal and informal brand alliances are being formed in professional service firms. Professional service corporate brand is heavily dependent on brands of professional employees who comprise them, and professional employee brands are in turn dependent on the corporate brand. Prior work provides limited scientific evidence of brand alliance effects in professional service area – i.e., how professional service corporate-employee brand allies are affected by an alliance, what are brand attitude effects after alliance formation and how these effects vary with different strengths of an ally. Scientific literature analysis and theoretical modeling are the main methods of the current study. As a result, a theoretical model is constructed for estimating spillover effects of professional service corporate-employee brand alliances and for comparison among different professional service firm expertise practice models – from “brains" to “procedure" model. The resulting theoretical model lays basis for future experimental studies.

Underlying Cognitive Complexity Measure Computation with Combinatorial Rules

Measuring the complexity of software has been an insoluble problem in software engineering. Complexity measures can be used to predict critical information about testability, reliability, and maintainability of software systems from automatic analysis of the source code. During the past few years, many complexity measures have been invented based on the emerging Cognitive Informatics discipline. These software complexity measures, including cognitive functional size, lend themselves to the approach of the total cognitive weights of basic control structures such as loops and branches. This paper shows that the current existing calculation method can generate different results that are algebraically equivalence. However, analysis of the combinatorial meanings of this calculation method shows significant flaw of the measure, which also explains why it does not satisfy Weyuker's properties. Based on the findings, improvement directions, such as measures fusion, and cumulative variable counting scheme are suggested to enhance the effectiveness of cognitive complexity measures.

Intelligent Fuzzy Input Estimator for the Input Force on the Rigid Bar Structure System

The intelligent fuzzy input estimator is used to estimate the input force of the rigid bar structural system in this study. The fuzzy Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The practicability and accuracy of the proposed method were verified with numerical simulations from which the input forces of a rigid bar structural system were estimated from the output responses. In order to examine the accuracy of the proposed method, a rigid bar structural system is subjected to periodic sinusoidal dynamic loading. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function and improper the initial process noise covariance. The estimated results have a good agreement with the true values in all cases tested.

Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System

This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.

Safety Practices among Bus Operators during Wee Hour Operations

Safety Health and Environment Code of Practice (SHE COP) was developed to help road transportation operators to manage its operation in a systematic and safe manner. A study was conducted to determine the effectiveness of SHE COP implementation during non-OPS period. The objective of the study is to evaluate the implementations of SHE COP among bus operators during wee hour operations. The data was collected by completing a set of checklist after observing the activities during pre departure, during the trip, and upon arrival. The results show that there are seven widely practiced SHE COP elements. 22% of the buses have average speed exceeding the maximum permissible speed on the highways (90 km/h), with 13% of the buses were travelling at the speed of more than 100 km/h. The statistical analysis shows that there is only one significant association which relates speeding with prior presence of enforcement officers.

The Transfer of Energy Technologies in a Developing Country Context Towards Improved Practice from Past Successes and Failures

Technology transfer of renewable energy technologies is very often unsuccessful in the developing world. Aside from challenges that have social, economic, financial, institutional and environmental dimensions, technology transfer has generally been misunderstood, and largely seen as mere delivery of high tech equipment from developed to developing countries or within the developing world from R&D institutions to society. Technology transfer entails much more, including, but not limited to: entire systems and their component parts, know-how, goods and services, equipment, and organisational and managerial procedures. Means to facilitate the successful transfer of energy technologies, including the sharing of lessons are subsequently extremely important for developing countries as they grapple with increasing energy needs to sustain adequate economic growth and development. Improving the success of technology transfer is an ongoing process as more projects are implemented, new problems are encountered and new lessons are learnt. Renewable energy is also critical to improve the quality of lives of the majority of people in developing countries. In rural areas energy is primarily traditional biomass. The consumption activities typically occur in an inefficient manner, thus working against the notion of sustainable development. This paper explores the implementation of technology transfer in the developing world (sub-Saharan Africa). The focus is necessarily on RETs since most rural energy initiatives are RETs-based. Additionally, it aims to highlight some lessons drawn from the cited RE projects and identifies notable differences where energy technology transfer was judged to be successful. This is done through a literature review based on a selection of documented case studies which are judged against the definition provided for technology transfer. This paper also puts forth research recommendations that might contribute to improved technology transfer in the developing world. Key findings of this paper include: Technology transfer cannot be complete without satisfying pre-conditions such as: affordability, maintenance (and associated plans), knowledge and skills transfer, appropriate know how, ownership and commitment, ability to adapt technology, sound business principles such as financial viability and sustainability, project management, relevance and many others. It is also shown that lessons are learnt in both successful and unsuccessful projects.

An Experimental Investigation on the Effect of Deep cold Rolling Parameters on Surface Roughness and Hardness of AISI 4140 Steel

Deep cold rolling (DCR) is a cold working process, which easily produces a smooth and work-hardened surface by plastic deformation of surface irregularities. In the present study, the influence of main deep cold rolling process parameters on the surface roughness and the hardness of AISI 4140 steel were studied by using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in terms of identifying the predominant factor amongst the selected parameters, their order of significance and setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. It was found that the ball diameter, rolling force, initial surface roughness and number of tool passes are the most pronounced parameters, which have great effects on the work piece-s surface during the deep cold rolling process. A simple, inexpensive and newly developed DCR tool, with interchangeable collet for using different ball diameters, was used throughout the experimental work presented in this paper.

Project Management Success for Contractors

The aim of this paper is to provide a better understanding of the implementation of Project Management practices by UiTM contractors to ensure project success. A questionnaire survey was administered to 120 UiTM contractors in Malaysia. The purpose of this method was to gather information on the contractors- project background and project management skills. It was found that all of the contractors had basic knowledge and understanding of project management skills. It is suggested that a reasonable project plan and an appropriate organizational structure are influential factors for project success. It is recommended that the contractors need to have an effective program of work and up to date information system are emphasized.

Intrapreneurship as a Unique Competitive Advantage

Intrapreneurship, a term used to describe entrepreneurship within existing organizations, has been acknowledged in international literature and practice as a vital element of economic and organizational growth, success and competitiveness and can be considered as a unique competitive advantage. The purpose of the paper is, first, to provide a comprehensive analysis of the concept of intrapreneurship, and, second, to highlight the need for a different approach in the research on the field of intrapreneurship. Concluding, the paper suggests directions for future research.

FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity

In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect channel estimation (ICE) environment. Under perfect channel estimation conditions, the performance of GMRC and MRC were identical. The main drawback of the GMRC study was that it was theoretical, thus successful FPGA implementation of it using pipeline techniques is needed as a wireless communication test-bed for practical real-life situations. Simulation results showed that the hardware implementation was efficient both in terms of speed and area. Since diversity combining is especially effective in small femto- and picocells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to the hardware of IP-based 4th generation networks.

Control and Simulation of FOPDT Food Processes with Constraints using PI Controller

The most common type of controller being used in the industry is PI(D) controller which has been used since 1945 and is still being widely used due to its efficiency and simplicity. In most cases, the PI(D) controller was tuned without taking into consideration of the effect of actuator saturation. In real processes, the most common actuator which is valve will act as constraint and restrict the controller output. Since the controller is not designed to encounter saturation, the process may windup and consequently resulted in large oscillation or may become unstable. Usually, an antiwindup compensator is added to the feedback control loop to reduce the deterioration effect of integral windup. This research aims to specifically control processes with constraints. The proposed method was applied to two different types of food processes, which are blending and spray drying. Simulations were done using MATLAB and the performances of the proposed method were compared with other conventional methods. The proposed technique was able to control the processes and avoid saturation such that no anti windup compensator is needed.

Investigating Quality Metrics for Multimedia Traffic in OLSR Routing Protocol

An Ad hoc wireless network comprises of mobile terminals linked and communicating with each other sans the aid of traditional infrastructure. Optimized Link State Protocol (OLSR) is a proactive routing protocol, in which routes are discovered/updated continuously so that they are available when needed. Hello messages generated by a node seeks information about its neighbor and if the latter fails to respond to a specified number of hello messages regulated by neighborhood hold time, the node is forced to assume that the neighbor is not in range. This paper proposes to evaluate OLSR routing protocol in a random mobility network having various neighborhood hold time intervals. The throughput and delivery ratio are also evaluated to learn about its efficiency for multimedia loads.

Practical Issues for Real-Time Video Tracking

In this paper we present the algorithm which allows us to have an object tracking close to real time in Full HD videos. The frame rate (FR) of a video stream is considered to be between 5 and 30 frames per second. The real time track building will be achieved if the algorithm can follow 5 or more frames per second. The principle idea is to use fast algorithms when doing preprocessing to obtain the key points and track them after. The procedure of matching points during assignment is hardly dependent on the number of points. Because of this we have to limit pointed number of points using the most informative of them.