Effect Comparison of Speckle Noise Reduction Filters on 2D-Echocardigraphic Images

Echocardiography imaging is one of the most common diagnostic tests that are widely used for assessing the abnormalities of the regional heart ventricle function. The main goal of the image enhancement task in 2D-echocardiography (2DE) is to solve two major anatomical structure problems; speckle noise and low quality. Therefore, speckle noise reduction is one of the important steps that used as a pre-processing to reduce the distortion effects in 2DE image segmentation. In this paper, we present the common filters that based on some form of low-pass spatial smoothing filters such as Mean, Gaussian, and Median. The Laplacian filter was used as a high-pass sharpening filter. A comparative analysis was presented to test the effectiveness of these filters after being applied to original 2DE images of 4-chamber and 2-chamber views. Three statistical quantity measures: root mean square error (RMSE), peak signal-to-ratio (PSNR) and signal-tonoise ratio (SNR) are used to evaluate the filter performance quantitatively on the output enhanced image.

Robust Minutiae Watermarking in Wavelet Domain for Fingerprint Security

In this manuscript, a wavelet-based blind watermarking scheme has been proposed as a means to provide security to authenticity of a fingerprint. The information used for identification or verification of a fingerprint mainly lies in its minutiae. By robust watermarking of the minutiae in the fingerprint image itself, the useful information can be extracted accurately even if the fingerprint is severely degraded. The minutiae are converted in a binary watermark and embedding these watermarks in the detail regions increases the robustness of watermarking, at little to no additional impact on image quality. It has been experimentally shown that when the minutiae is embedded into wavelet detail coefficients of a fingerprint image in spread spectrum fashion using a pseudorandom sequence, the robustness is observed to have a proportional response while perceptual invisibility has an inversely proportional response to amplification factor “K". The DWT-based technique has been found to be very robust against noises, geometrical distortions filtering and JPEG compression attacks and is also found to give remarkably better performance than DCT-based technique in terms of correlation coefficient and number of erroneous minutiae.

Investigation of Effective Parameters on Annealing and Hot Spotting Processes for Straightening of Bent Turbine Rotors

The most severe damage of the turbine rotor is its distortion. The rotor straightening process must lead, at the first stage, to removal of the stresses from the material by annealing and next, to straightening of the plastic distortion without leaving any stress by hot spotting. The straightening method does not produce stress accumulations and the heating technique, developed specifically for solid forged rotors and disks, enables to avoid local overheating and structural changes in the material. This process also does not leave stresses in the shaft material. An experimental study of hot spotting is carried out on a large turbine rotor and some of the most important effective parameters that must be considered on annealing and hot spotting processes are investigated in this paper.

A Low Noise Microwave Filter with Minimum Distortion

In this paper, a low noise microwave bandpass filter (BPF) is presented. This filter is fabricated by modifying the conventional cross-coupled structure. The spurious response is improved by using the end open coupled lines, and the influence of the noise is minimized. Impedance matrix of the open end coupled circuit clarifies the characteristic of the suppression of the spurious response. The rejection of spurious suppression region of the proposed filter is greater than 20 dB from 3-13 GHz. The measured results of the fabricated filter confirm the concepts of the proposed design and exhibits high performance.

Statistical Evaluation of Nonlinear Distortion using the Multi-Canonical Monte Carlo Method and the Split Step Fourier Method

In high powered dense wavelength division multiplexed (WDM) systems with low chromatic dispersion, four-wave mixing (FWM) can prove to be a major source of noise. The MultiCanonical Monte Carlo Method (MCMC) and the Split Step Fourier Method (SSFM) are combined to accurately evaluate the probability density function of the decision variable of a receiver, limited by FWM. The combination of the two methods leads to more accurate results, and offers the possibility of adding other optical noises such as the Amplified Spontaneous Emission (ASE) noise.

Speech Coding and Recognition

This paper investigates the performance of a speech recognizer in an interactive voice response system for various coded speech signals, coded by using a vector quantization technique namely Multi Switched Split Vector Quantization Technique. The process of recognizing the coded output can be used in Voice banking application. The recognition technique used for the recognition of the coded speech signals is the Hidden Markov Model technique. The spectral distortion performance, computational complexity, and memory requirements of Multi Switched Split Vector Quantization Technique and the performance of the speech recognizer at various bit rates have been computed. From results it is found that the speech recognizer is showing better performance at 24 bits/frame and it is found that the percentage of recognition is being varied from 100% to 93.33% for various bit rates.

An Intelligent System for Phish Detection, using Dynamic Analysis and Template Matching

Phishing, or stealing of sensitive information on the web, has dealt a major blow to Internet Security in recent times. Most of the existing anti-phishing solutions fail to handle the fuzziness involved in phish detection, thus leading to a large number of false positives. This fuzziness is attributed to the use of highly flexible and at the same time, highly ambiguous HTML language. We introduce a new perspective against phishing, that tries to systematically prove, whether a given page is phished or not, using the corresponding original page as the basis of the comparison. It analyzes the layout of the pages under consideration to determine the percentage distortion between them, indicative of any form of malicious alteration. The system design represents an intelligent system, employing dynamic assessment which accurately identifies brand new phishing attacks and will prove effective in reducing the number of false positives. This framework could potentially be used as a knowledge base, in educating the internet users against phishing.

Robust Face Recognition using AAM and Gabor Features

In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM.

Performance of Subcarrier- OCDMA System with Complementary Subtraction Detection Technique

A subcarrier - spectral amplitude coding optical code division multiple access system using the Khazani-Syed code with Complementary subtraction detection technique is proposed. The proposed system has been analyzed by taking into account the effects of phase-induced intensity noise, shot noise, thermal noise and intermodulation distortion noise. The performance of the system has been compared with the spectral amplitude coding optical code division multiple access system using the Hadamard code and the Modified Quadratic Congruence code. The analysis shows that the proposed system can eliminate the multiple access interference using the Complementary subtraction detection technique, and hence improve the overall system performance.

Harmonic Comparison between Fluorescent and WOLED (White Organic LED) Lamps

Fluorescent and WOLED are widely used because it consumes less energy. However, both lamps cause a harmonics because it has semiconductors components. Harmonic is a distorted sinusoidal electric wave and cause excess heat. This study compares the amount of harmonics generated by both lamps. The test shows that both lamps have THDv(Total Harmonics Distortion of Voltage) almost the same with average 2.5% while the average of WOLED's THDi(Total Harmonics Distortion of Current) is lower than fluorescent has. The average WOLED's THDi is 29.10 % and fluorescent's 'THDi is 87. 23 %.

New Enhanced Hexagon-Based Search Using Point-Oriented Inner Search for Fast Block Motion Estimation

Recently, an enhanced hexagon-based search (EHS) algorithm was proposed to speedup the original hexagon-based search (HS) by exploiting the group-distortion information of some evaluated points. In this paper, a second version of the EHS is proposed with a new point-oriented inner search technique which can further speedup the HS in both large and small motion environments. Experimental results show that the enhanced hexagon-based search version-2 (EHS2) is faster than the HS up to 34% with negligible PSNR degradation.

Arriving at an Optimum Value of Tolerance Factor for Compressing Medical Images

Medical imaging uses the advantage of digital technology in imaging and teleradiology. In teleradiology systems large amount of data is acquired, stored and transmitted. A major technology that may help to solve the problems associated with the massive data storage and data transfer capacity is data compression and decompression. There are many methods of image compression available. They are classified as lossless and lossy compression methods. In lossy compression method the decompressed image contains some distortion. Fractal image compression (FIC) is a lossy compression method. In fractal image compression an image is coded as a set of contractive transformations in a complete metric space. The set of contractive transformations is guaranteed to produce an approximation to the original image. In this paper FIC is achieved by PIFS using quadtree partitioning. PIFS is applied on different images like , Ultrasound, CT Scan, Angiogram, X-ray, Mammograms. In each modality approximately twenty images are considered and the average values of compression ratio and PSNR values are arrived. In this method of fractal encoding, the parameter, tolerance factor Tmax, is varied from 1 to 10, keeping the other standard parameters constant. For all modalities of images the compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the decompressed image is arrived by PSNR values. From the results it is observed that the compression ratio increases with the tolerance factor and mammogram has the highest compression ratio. The quality of the image is not degraded upto an optimum value of tolerance factor, Tmax, equal to 8, because of the properties of fractal compression.

A Fixed Band Hysteresis Current Controller for Voltage Source AC Chopper

Most high-performance ac drives utilize a current controller. The controller switches a voltage source inverter (VSI) such that the motor current follows a set of reference current waveforms. Fixed-band hysteresis (FBH) current control has been widely used for the PWM inverter. We want to apply the same controller for the PWM AC chopper. The aims of the controller is to optimize the harmonic content at both input and output sides, while maintaining acceptable losses in the ac chopper and to control in wide range the fundamental output voltage. Fixed band controller has been simulated and analyzed for a single-phase AC chopper and are easily extended to three-phase systems. Simulation confirmed the advantages and the excellent performance of the modulation method applied for the AC chopper.

An Optimized Design of Non-uniform Filterbank

The tree structured approach of non-uniform filterbank (NUFB) is normally used in perfect reconstruction (PR). The PR is not always feasible due to certain limitations, i.e, constraints in selecting design parameters, design complexity and some times output is severely affected by aliasing error if necessary and sufficient conditions of PR is not satisfied perfectly. Therefore, there has been generalized interest of researchers to go for near perfect reconstruction (NPR). In this proposed work, an optimized tree structure technique is used for the design of NPR non-uniform filterbank. Window functions of Blackman family are used to design the prototype FIR filter. A single variable linear optimization is used to minimize the amplitude distortion. The main feature of the proposed design is its simplicity with linear phase property.

Lower Order Harmonics Minimisation in CHB Inverter Using GA and Decomposition by WT

Nowadays Multilevel inverters are widely using in various applications. Modulation strategy at fundamental switching frequency like, SHEPWM is prominent technique to eliminate lower order of harmonics with less switching losses and better harmonic profile. The equations which are formed by SHE are highly nonlinear transcendental in nature, there may exist single, multiple or even no solutions for a particular MI. However, some loads such as electrical drives, it is required to operate in whole range of MI. In order to solve SHE equations for whole range of MI, intelligent techniques are well suited to solve equations so as to produce lest %THDV. Hence, this paper uses Continuous genetic algorithm for minimising harmonics. This paper also presents wavelet based analysis of harmonics. The developed algorithm is simulated and %THD from FFT analysis and Wavelet analysis are compared. MATLAB programming environment and SIMULINK models are used whenever necessary.

High Capacity Data Hiding based on Predictor and Histogram Modification

In this paper, we propose a high capacity image hiding technology based on pixel prediction and the difference of modified histogram. This approach is used the pixel prediction and the difference of modified histogram to calculate the best embedding point. This approach can improve the predictive accuracy and increase the pixel difference to advance the hiding capacity. We also use the histogram modification to prevent the overflow and underflow. Experimental results demonstrate that our proposed method within the same average hiding capacity can still keep high quality of image and low distortion

Reversible Watermarking on Stereo Image Sequences

In this paper, a new reversible watermarking method is presented that reduces the size of a stereoscopic image sequence while keeping its content visible. The proposed technique embeds the residuals of the right frames to the corresponding frames of the left sequence, halving the total capacity. The residual frames may result in after a disparity compensated procedure between the two video streams or by a joint motion and disparity compensation. The residuals are usually lossy compressed before embedding because of the limited embedding capacity of the left frames. The watermarked frames are visible at a high quality and at any instant the stereoscopic video may be recovered by an inverse process. In fact, the left frames may be exactly recovered whereas the right ones are slightly distorted as the residuals are not embedded intact. The employed embedding method reorders the left frame into an array of consecutive pixel pairs and embeds a number of bits according to their intensity difference. In this way, it hides a number of bits in intensity smooth areas and most of the data in textured areas where resulting distortions are less visible. The experimental evaluation demonstrates that the proposed scheme is quite effective.

A Robust Watermarking using Blind Source Separation

In this paper, we present a robust and secure algorithm for watermarking, the watermark is first transformed into the frequency domain using the discrete wavelet transform (DWT). Then the entire DWT coefficient except the LL (Band) discarded, these coefficients are permuted and encrypted by specific mixing. The encrypted coefficients are inserted into the most significant spectral components of the stego-image using a chaotic system. This technique makes our watermark non-vulnerable to the attack (like compression, and geometric distortion) of an active intruder, or due to noise in the transmission link.

Causes of Rotor Distortions and Applicable Common Straightening Methods for Turbine Rotors and Shafts

Different problems may causes distortion of the rotor, and hence vibration, which is the most severe damage of the turbine rotors. In many years different techniques have been developed for the straightening of bent rotors. The method for straightening can be selected according to initial information from preliminary inspections and tests such as nondestructive tests, chemical analysis, run out tests and also a knowledge of the shaft material. This article covers the various causes of excessive bends and then some applicable common straightening methods are reviewed. Finally, hot spotting is opted for a particular bent rotor. A 325 MW steam turbine rotor is modeled and finite element analyses are arranged to investigate this straightening process. Results of experimental data show that performing the exact hot spot straightening process reduced the bending of the rotor significantly.

A Computationally Efficient Design for Prototype Filters of an M-Channel Cosine Modulated Filter Bank

The paper discusses a computationally efficient method for the design of prototype filters required for the implementation of an M-band cosine modulated filter bank. The prototype filter is formulated as an optimum interpolated FIR filter. The optimum interpolation factor requiring minimum number of multipliers is used. The model filter as well as the image suppressor will be designed using the Kaiser window. The method will seek to optimize a single parameter namely cutoff frequency to minimize the distortion in the overlapping passband.