Statistical Evaluation of Nonlinear Distortion using the Multi-Canonical Monte Carlo Method and the Split Step Fourier Method

In high powered dense wavelength division multiplexed (WDM) systems with low chromatic dispersion, four-wave mixing (FWM) can prove to be a major source of noise. The MultiCanonical Monte Carlo Method (MCMC) and the Split Step Fourier Method (SSFM) are combined to accurately evaluate the probability density function of the decision variable of a receiver, limited by FWM. The combination of the two methods leads to more accurate results, and offers the possibility of adding other optical noises such as the Amplified Spontaneous Emission (ASE) noise.

Implementation of the Personal Emergency Response System

The aged are faced with increasing risk for falls. The aged have the easily fragile bones than others. When falls have occurred, it is important to detect this emergency state because such events often lead to more serious illness or even death. A implementation of PDA system, for detection of emergency situation, was developed using 3-axis accelerometer in this paper as follows. The signals were acquired from the 3-axis accelerometer, and then transmitted to the PDA through Bluetooth module. This system can classify the human activity, and also detect the emergency state like falls. When the fall occurs, the system generates the alarm on the PDA. If a subject does not respond to the alarm, the system determines whether the current situation is an emergency state or not, and then sends some information to the emergency center in the case of urgent situation. Three different studies were conducted on 12 experimental subjects, with results indicating a good accuracy. The first study was performed to detect the posture change of human daily activity. The second study was performed to detect the correct direction of fall. The third study was conducted to check the classification of the daily physical activity. Each test was lasted at least 1 min. in third study. The output of acceleration signal was compared and evaluated by changing a various posture after attaching a 3-axis accelerometer module on the chest. The newly developed system has some important features such as portability, convenience and low cost. One of the main advantages of this system is that it is available at home healthcare environment. Another important feature lies in low cost to manufacture device. The implemented system can detect the fall accurately, so will be widely used in emergency situation.

Coherent PON for NG-PON2: 40Gbps Downstream Transmission with 40dB Power Margin using Commercial DFB Lasers and no Optical Amplification

We demonstrate a 40Gbps downstream PON transmission based on PM-QPSK modulation using commercial DFB lasers without optical amplifier in the ODN, obtaining 40dB power budget. We discuss this solution within NG-PON2 architectures.

Exterior Calculus: Economic Growth Dynamics

Mathematical models of dynamics employing exterior calculus are mathematical representations of the same unifying principle; namely, the description of a dynamic system with a characteristic differential one-form on an odd-dimensional differentiable manifold leads, by analysis with exterior calculus, to a set of differential equations and a characteristic tangent vector (vortex vector) which define transformations of the system. Using this principle, a mathematical model for economic growth is constructed by proposing a characteristic differential one-form for economic growth dynamics (analogous to the action in Hamiltonian dynamics), then generating a pair of characteristic differential equations and solving these equations for the rate of economic growth as a function of labor and capital. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian for economic growth dynamics is obtained.

Surviving Abiotic Stress: The Relationship between High Light and High Salt Tolerance

The mechanism of abiotic stress tolerance is crucial for plants to survive in harsh condition and the knowledge of this mechanism can be use to solve the problem of declining productivity of plants or crops around the world. However in-depth description is still unclear and it is argued, in particular that there is a relationship between high salinity tolerance and the ability to tolerate high light condition. In this study, Dunaliella salina, which can withstand high salt was used as a model. Chlorophyll fluorometer for nonphotochemical quenching (NPQ) measurement and high-performance liquid chromatography for pigment determination was used. The results show that NPQ value and the amount of pigment were increased along with the levels of salinity. However, it establish a clear relationship between high salt and high light but the further study to optimized the solutions mentioned above is still required.

Design and Performance Analysis of a Supersonic Diffuser for Plasma Wing Tunnel

Plasma Wind Tunnels (PWT) are extensively used for screening and qualification of re-entry Thermel Protection System (TPS) materials. Proper design of a supersonic diffuser for plasma wind tunnel is of importance for achieving good pressurerecovery (thereby reducing vacuum pumping requirement & run time costs) and isolating downstream stream fluctuations from propagating costs) and isolating downstream stream fluctuationnts the details of a rapid design methodology successfully employed for designing supersonic diffuser for high power (several megawatts)plasma wind tunnels and numerical performance analysis of a diffuser configuration designed for one megawatt power rated plasma wind tunnel(enthalpy ~ 30 MJ/kg) using FLUENT 6.3® solver for different diffuser operating sub-atmospheric back-pressures.

Building Virtual Reality Environments for Distance Education on the Web: A Case Study in Medical Education

The paper presents an investigation into the role of virtual reality and web technologies in the field of distance education. Within this frame, special emphasis is given on the building of web-based virtual learning environments so as to successfully fulfill their educational objectives. In particular, basic pedagogical methods are studied, focusing mainly on the efficient preparation, approach and presentation of learning content, and specific designing rules are presented considering the hypermedia, virtual and educational nature of this kind of applications. The paper also aims to highlight the educational benefits arising from the use of virtual reality technology in medicine and study the emerging area of web-based medical simulations. Finally, an innovative virtual reality environment for distance education in medicine is demonstrated. The proposed environment reproduces conditions of the real learning process and enhances learning through a real-time interactive simulator.

Non-Isothermal Kinetics of Crystallization and Phase Transformation of SiO2-Al2O3-P2O5-CaO-CaF Glass

The crystallization kinetics and phase transformation of SiO2.Al2O3.0,56P2O5.1,8CaO.0,56CaF2 glass have been investigated using differential thermal analysis (DTA), x-ray diffraction (XRD), and scanning electron microscopy (SEM). Glass samples were obtained by melting the glass mixture at 14500С/120 min. in platinum crucibles. The mixture were prepared from chemically pure reagents: SiO2, Al(OH)3, H3PO4, CaCO3 and CaF2. The non-isothermal kinetics of crystallization was studied by applying the DTA measurements carried out at various heating rates. The activation energies of crystallization and viscous flow were measured as 348,4 kJ.mol–1 and 479,7 kJ.mol–1 respectively. Value of Avrami parameter n ≈ 3 correspond to a three dimensional of crystal growth mechanism. The major crystalline phase determined by XRD analysis was fluorapatite (Ca(PO4)3F) and as the minor phases – fluormargarite (CaAl2(Al2SiO2)10F2) and vitlokite (Ca9P6O24). The resulting glass-ceramic has a homogeneous microstructure, composed of prismatic crystals, evenly distributed in glass phase.

A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube

We report a lithography-free approach to fabricate the biomimetics, quasi-beehive Si nanostructures (QBSNs), on Si-substrates. The self-assembled SiGe nanoislands via the strain induced surface roughening (Asaro-Tiller-Grinfeld instability) during in-situ annealing play a key role as patterned sacrifice regions for subsequent reactive ion etching (RIE) process performed for fabricating quasi-beehive nanostructures on Si-substrates. As the measurements of field emission, the bare QBSNs show poor field emission performance, resulted from the existence of the native oxide layer which forms an insurmountable barrier for electron emission. In order to dramatically improve the field emission characteristics, the platinum nanopillars (Pt-NPs) were deposited on QBSNs to form Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2), and the field enhancement factor (β-value) is significantly increased to 6067. More importantly, the uniform and continuous electrons excite light emission, due to the surrounding filed emitters from Pt-NPs/QBSNs, can be easily obtained. This approach does not require an expensive photolithographic process and possesses great potential for applications.

Model Parameters Estimating on Lyman–Kutcher–Burman Normal Tissue Complication Probability for Xerostomia on Head and Neck Cancer

The purpose of this study is to derive parameters estimating for the Lyman–Kutcher–Burman (LKB) normal tissue complication probability (NTCP) model using analysis of scintigraphy assessments and quality of life (QoL) measurement questionnaires for the parotid gland (xerostomia). In total, 31 patients with head-and-neck (HN) cancer were enrolled. Salivary excretion factor (SEF) and EORTC QLQ-H&N35 questionnaires datasets are used for the NTCP modeling to describe the incidence of grade 4 xerostomia. Assuming that n= 1, NTCP fitted parameters are given as TD50= 43.6 Gy, m= 0.18 in SEF analysis, and as TD50= 44.1 Gy, m= 0.11 in QoL measurements, respectively. SEF and QoL datasets can validate the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) guidelines well, resulting in NPV-s of 100% for the both datasets and suggests that the QUANTEC 25/20Gy gland-spared guidelines are suitable for clinical used for the HN cohort to effectively avoid xerostomia.

Simulation of an Auto-Tuning Bicycle Suspension Fork with Quick Releasing Valves

Bicycle configuration is not as large as those of motorcycles or automobiles, while it indeed composes a complicated dynamic system. People-s requirements on comfortability, controllability and safety grow higher as the research and development technologies improve. The shock absorber affects the vehicle suspension performances enormously. The absorber takes the vibration energy and releases it at a suitable time, keeping the wheel under a proper contact condition with road surface, maintaining the vehicle chassis stability. Suspension design for mountain bicycles is more difficult than that of city bikes since it encounters dynamic variations on road and loading conditions. Riders need a stiff damper as they exert to tread on the pedals when climbing, while a soft damper when they descend downhill. Various switchable shock absorbers are proposed in markets, however riders have to manually switch them among soft, hard and lock positions. This study proposes a novel design of the bicycle shock absorber, which provides automatic smooth tuning of the damping coefficient, from a predetermined lower bound to theoretically unlimited. An automatic quick releasing valve is involved in this design so that it can release the peak pressure when the suspension fork runs into a square-wave type obstacle and prevent the chassis from damage, avoiding the rider skeleton from injury. This design achieves the automatic tuning process by innovative plunger valve and fluidic passage arrangements without any electronic devices. Theoretical modelling of the damper and spring are established in this study. Design parameters of the valves and fluidic passages are determined. Relations between design parameters and shock absorber performances are discussed in this paper. The analytical results give directions to the shock absorber manufacture.

Time Domain and Frequency Domain Analyses of Measured Metocean Data for Malaysian Waters

Data of wave height and wind speed were collected from three existing oil fields in South China Sea – offshore Peninsular Malaysia, Sarawak and Sabah regions. Extreme values and other significant data were employed for analysis. The data were recorded from 1999 until 2008. The results show that offshore structures are susceptible to unacceptable motions initiated by wind and waves with worst structural impacts caused by extreme wave heights. To protect offshore structures from damage, there is a need to quantify descriptive statistics and determine spectra envelope of wind speed and wave height, and to ascertain the frequency content of each spectrum for offshore structures in the South China Sea shallow waters using measured time series. The results indicate that the process is nonstationary; it is converted to stationary process by first differencing the time series. For descriptive statistical analysis, both wind speed and wave height have significant influence on the offshore structure during the northeast monsoon with high mean wind speed of 13.5195 knots ( = 6.3566 knots) and the high mean wave height of 2.3597 m ( = 0.8690 m). Through observation of the spectra, there is no clear dominant peak and the peaks fluctuate randomly. Each wind speed spectrum and wave height spectrum has its individual identifiable pattern. The wind speed spectrum tends to grow gradually at the lower frequency range and increasing till it doubles at the higher frequency range with the mean peak frequency range of 0.4104 Hz to 0.4721 Hz, while the wave height tends to grow drastically at the low frequency range, which then fluctuates and decreases slightly at the high frequency range with the mean peak frequency range of 0.2911 Hz to 0.3425 Hz.

E-Learning Management Systems General Framework

The recent development in learning technologies leads to emerge many learning management systems (LMS). In this study, we concentrate on the specifications and characteristics of LMSs. Furthermore, this paper emphasizes on the feature of e-learning management systems. The features take on the account main indicators to assist and evaluate the quality of e-learning systems. The proposed indicators based of ten dimensions.

Cooling of Fresh Vegetable Farm Produce: Experimental and Numerical Studies

Following harvest, fresh produce needs to be cooled immediately in a room where the air temperature and the relative air humidity are controlled to maintain the produce quality. In this paper, an experimental study for forced air cooling of fresh produce (cauliflower) is performed using a pilot developed within our laboratory. Furthermore, a numerical simulation of spherical produces, taking into account the aerodynamic aspect and also the heat transfer in the produce and in the air, was carried out using a finite element method. At the end of this communication, experimental results are presented and compared with the simulation.

Automatic Road Network Recognition and Extraction for Urban Planning

The uses of road map in daily activities are numerous but it is a hassle to construct and update a road map whenever there are changes. In Universiti Malaysia Sarawak, research on Automatic Road Extraction (ARE) was explored to solve the difficulties in updating road map. The research started with using Satellite Image (SI), or in short, the ARE-SI project. A Hybrid Simple Colour Space Segmentation & Edge Detection (Hybrid SCSS-EDGE) algorithm was developed to extract roads automatically from satellite-taken images. In order to extract the road network accurately, the satellite image must be analyzed prior to the extraction process. The characteristics of these elements are analyzed and consequently the relationships among them are determined. In this study, the road regions are extracted based on colour space elements and edge details of roads. Besides, edge detection method is applied to further filter out the non-road regions. The extracted road regions are validated by using a segmentation method. These results are valuable for building road map and detecting the changes of the existing road database. The proposed Hybrid Simple Colour Space Segmentation and Edge Detection (Hybrid SCSS-EDGE) algorithm can perform the tasks fully automatic, where the user only needs to input a high-resolution satellite image and wait for the result. Moreover, this system can work on complex road network and generate the extraction result in seconds.

Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing

Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.

The Journey of a Malicious HTTP Request

SQL injection on web applications is a very popular kind of attack. There are mechanisms such as intrusion detection systems in order to detect this attack. These strategies often rely on techniques implemented at high layers of the application but do not consider the low level of system calls. The problem of only considering the high level perspective is that an attacker can circumvent the detection tools using certain techniques such as URL encoding. One technique currently used for detecting low-level attacks on privileged processes is the tracing of system calls. System calls act as a single gate to the Operating System (OS) kernel; they allow catching the critical data at an appropriate level of detail. Our basic assumption is that any type of application, be it a system service, utility program or Web application, “speaks” the language of system calls when having a conversation with the OS kernel. At this level we can see the actual attack while it is happening. We conduct an experiment in order to demonstrate the suitability of system call analysis for detecting SQL injection. We are able to detect the attack. Therefore we conclude that system calls are not only powerful in detecting low-level attacks but that they also enable us to detect highlevel attacks such as SQL injection.

Inhibition Kinetic Determination of Trace Amounts of Ruthenium(III) by the Spectrophotometric method with Rhodamine B in Micellar Medium

A new, simple and highly sensitive kinetic spectrophotometric method was developed for the determination of trace amounts of Ru(III) in the range of 0.06-20 ng/ml .The method is based on the inhibitory effect of ruthenium(III) on the oxidation of Rhodamine B by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decreasing in absorbance of Rhodamine B at 554 nm with a fixedtime method..The limit of detection is 0.04 ng/ml Ru(III).The relative standard deviation of 5 and 10 ng/ml Ru(III) was 2.3 and 2.7 %, respectively. The method was applied to the determination of ruthenium in real water samples

Speaker Identification Using Admissible Wavelet Packet Based Decomposition

Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.

Wastewater Treatment in Moving-Bed Biofilm Reactor operated by Flow Reversal Intermittent Aeration System

Intermittent aeration process can be easily applied on the existing activated sludge system and is highly reliable against the loading changes. It can be operated in a relatively simple way as well. Since the moving-bed biofilm reactor method processes pollutants by attaching and securing the microorganisms on the media, the process efficiency can be higher compared to the suspended growth biological treatment process, and can reduce the return of sludge. In this study, the existing intermittent aeration process with alternating flow being applied on the oxidation ditch is applied on the continuous flow stirred tank reactor with advantages from both processes, and we would like to develop the process to significantly reduce the return of sludge in the clarifier and to secure the reliable quality of treated water by adding the moving media. Corresponding process has the appropriate form as an infrastructure based on u- environment in future u- City and is expected to accelerate the implementation of u-Eco city in conjunction with city based services. The system being conducted in a laboratory scale has been operated in HRT 8hours except for the final clarifier and showed the removal efficiency of 97.7 %, 73.1 % and 9.4 % in organic matters, TN and TP, respectively with operating range of 4hour cycle on system SRT 10days. After adding the media, the removal efficiency of phosphorus showed a similar level compared to that before the addition, but the removal efficiency of nitrogen was improved by 7~10 %. In addition, the solids which were maintained in MLSS 1200~1400 at 25 % of media packing were attached all onto the media, which produced no sludge entering the clarifier. Therefore, the return of sludge is not needed any longer.