A Novel Methodology for Synthesis of Fault Trees from MATLAB-Simulink Model

Fault tree analysis is a well-known method for reliability and safety assessment of engineering systems. In the last 3 decades, a number of methods have been introduced, in the literature, for automatic construction of fault trees. The main difference between these methods is the starting model from which the tree is constructed. This paper presents a new methodology for the construction of static and dynamic fault trees from a system Simulink model. The method is introduced and explained in detail, and its correctness and completeness is experimentally validated by using an example, taken from literature. Advantages of the method are also mentioned.

Enhanced Conference Organization Based On Correlation of Web Information and Ontology Based Expertise Search

From the importance of the conference and its constructive role in the studies discussion, there must be a strong organization that allows the exploitation of the discussions in opening new horizons. The vast amount of information scattered across the web, make it difficult to find experts, who can play a prominent role in organizing conferences. In this paper we proposed a new approach of extracting researchers- information from various Web resources and correlating them in order to confirm their correctness. As a validator of this approach, we propose a service that will be useful to set up a conference. Its main objective is to find appropriate experts, as well as the social events for a conference. For this application we us Semantic Web technologies like RDF and ontology to represent the confirmed information, which are linked to another ontology (skills ontology) that are used to present and compute the expertise.

Optical Characterization of a Microwave Plasma Torch for Hydrogen Production

Hydrogen sulfide (H2S) is a very toxic gas that is produced in very large quantities in the oil and gas industry. It cannot be flared to the atmosphere and Claus process based gas plants are used to recover the sulfur and convert the hydrogen to water. In this paper, we present optical characterization of an atmospheric pressure microwave plasma torch for H2S dissociation into hydrogen and sulfur. The torch is operated at 2.45 GHz with power up to 2 kW. Three different gases can simultaneously be injected in the plasma torch. Visual imaging and optical emission spectroscopy are used to characterize the plasma for varying gas flow rates and microwave power. The plasma length, emission spectra and temperature are presented. The obtained experimental results validate our earlier published simulation results of plasma torch.

Estimation of the Bit Side Force by Using Artificial Neural Network

Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.

The Development of Smart School Condition Assessment Based on Condition Survey Protocol (CSP) 1 Matrix: A Literature Review

Building inspection is one of the key components of building maintenance. The primary purpose of performing a building inspection is to evaluate the building-s condition. Without inspection, it is difficult to determine a built asset-s current condition, so failure to inspect can contribute to the asset-s future failure. Traditionally, a longhand survey description has been widely used for property condition reports. Surveys that employ ratings instead of descriptions are gaining wide acceptance in the industry because they cater to the need for numerical analysis output. These kinds of surveys are also in keeping with the new RICS HomeBuyer Report 2009. In this paper, we propose a new assessment method, derived from the current rating systems, for assessing the specifically smart school building-s condition and rating the seriousness of each defect identified. These two assessment criteria are then multiplied to find the building-s score, which we called the Condition Survey Protocol (CSP) 1 Matrix. Instead of a longhand description of a building-s defects, this matrix requires concise explanations about the defects identified, thus saving on-site time during a smart school building inspection. The full score is used to give the building an overall rating: Good, Fair or Dilapidated.

Effect of Process Parameters on Aerobic Decolourization of Reactive Azo Dye using Mixed Culture

In the present study, an attempt was made to examine the potential of aerobic mixed culture for decolourization of Remazol Black B dye in batch reactors. The effect of pH, temperature, inoculum, initial concentration of dye and initial concentration of glucose was studied with an aim to determine the optimal conditions required for maximum decolourization and degradation. The culture exhibited maximum decolourization ability at pH between 7-8 and at 30°C. A 10% (v/v) inoculum and 1% (w/v) glucose concentration were found to be the optimum for decolourization. A maximum of 98% decolourization was observed at 25 ppm initial concentration of dye after 18 hours of incubation period. At higher dye concentration of 300 ppm, the removal in colour was found to be 75% in 48 hours of incubation period. The results show that the enriched mixed culture from activated sludge has good potential in removal of Remazol Black B dye from wastewater under aerobic conditions.

CSOLAP (Continuous Spatial On-Line Analytical Processing)

Decision support systems are usually based on multidimensional structures which use the concept of hypercube. Dimensions are the axes on which facts are analyzed and form a space where a fact is located by a set of coordinates at the intersections of members of dimensions. Conventional multidimensional structures deal with discrete facts linked to discrete dimensions. However, when dealing with natural continuous phenomena the discrete representation is not adequate. There is a need to integrate spatiotemporal continuity within multidimensional structures to enable analysis and exploration of continuous field data. Research issues that lead to the integration of spatiotemporal continuity in multidimensional structures are numerous. In this paper, we discuss research issues related to the integration of continuity in multidimensional structures, present briefly a multidimensional model for continuous field data. We also define new aggregation operations. The model and the associated operations and measures are validated by a prototype.

A Study on the Secure ebXML Transaction Models

ebXML (Electronic Business using eXtensible Markup Language) is an e-business standard, sponsored by UN/CEFACT and OASIS, which enables enterprises to exchange business messages, conduct trading relationships, communicate data in common terms and define and register business processes. While there is tremendous e-business value in the ebXML, security remains an unsolved problem and one of the largest barriers to adoption. XML security technologies emerging recently have extensibility and flexibility suitable for security implementation such as encryption, digital signature, access control and authentication. In this paper, we propose ebXML business transaction models that allow trading partners to securely exchange XML based business transactions by employing XML security technologies. We show how each XML security technology meets the ebXML standard by constructing the test software and validating messages between the trading partners.

Possibilities of Sewage Sludge Application in the Conditions of Slovak Republic

The direct sewage sludge application is a relative cheap method for their liquidation. In the past heavy metal contents increase in soils treated with sewage sludge was observed. In 2003 there was acceptance on act n.188/2003 about sewage sludge application on soils. The basic philosophy of act is a safety of the environmental proof of sludge application on soils. The samples of soils from wastewater treatment plant (WTP) Poprad (35) and WTP Michalovce (33 samples) were analyzed which were chosen for sludge application on soils. According to the results only 14 areas for Poprad and 25 areas for Michalovce are suitable for sludge application according to act No. 188/2003. The application dose of sludge was calculated 50 t.ha-1 or 75 t. ha-1 once in 5 years to ensure that heavy metal contents in treated soils will be kept.

Numerical Studies on Flow Field Characteristics of Cavity Based Scramjet Combustors

The flow field within the combustor of scramjet engine is very complex and poses a considerable challenge in the design and development of a supersonic combustor with an optimized geometry. In this paper comprehensive numerical studies on flow field characteristics of different cavity based scramjet combustors with transverse injection of hydrogen have been carried out for both non-reacting and reacting flows. The numerical studies have been carried out using a validated 2D unsteady, density based 1st-order implicit k-omega turbulence model with multi-component finite rate reacting species. The results show a wide variety of flow features resulting from the interactions between the injector flows, shock waves, boundary layers, and cavity flows. We conjectured that an optimized cavity is a good choice to stabilize the flame in the hypersonic flow, and it generates a recirculation zone in the scramjet combustor. We comprehended that the cavity based scramjet combustors having a bearing on the source of disturbance for the transverse jet oscillation, fuel/air mixing enhancement, and flameholding improvement. We concluded that cavity shape with backward facing step and 45o forward ramp is a good choice to get higher temperatures at the exit compared to other four models of scramjet combustors considered in this study.

Isolation of β-Sitosterol Diarabinoside from Rhizomes of Alpinia Galanga

Alpinia galanga is rhizome, generally known as Greater galangal and is selected for isolation of newer constituents accountable for various therapeutic activities. Present study is intended to isolate glycoside from Alpinia galanga rhizomes. Alpinia galanga methanolic extract was column chromatograph and eluted with ethyl acetate-methanol (99:1) to isolate compound β-Sitosterol Diarabinoside. Herein, the isolation and structural elucidation of new compound is described. Chemical investigation of methanolic extract of rhizomes of Alpinia galanga furnished a new compound β- Sitosterol Diarabinoside. The IR, NMR and MASS investigations of isolated compound confirmed its structure as β-Sitosterol Diarabinoside, which is isolated for the first time from a medicinal plant or any synthetic source.

Word Base Line Detection in Handwritten Text Recognition Systems

An approach is offered for more precise definition of base lines- borders in handwritten cursive text and general problems of handwritten text segmentation have also been analyzed. An offered method tries to solve problems arose in handwritten recognition with specific slant or in other words, where the letters of the words are not on the same vertical line. As an informative features, some recognition systems use ascending and descending parts of the letters, found after the word-s baseline detection. In such recognition systems, problems in baseline detection, impacts the quality of the recognition and decreases the rate of the recognition. Despite other methods, here borders are found by small pieces containing segmentation elements and defined as a set of linear functions. In this method, separate borders for top and bottom border lines are found. At the end of the paper, as a result, azerbaijani cursive handwritten texts written in Latin alphabet by different authors has been analyzed.

Project Selection Using Fuzzy Group Analytic Network Process

This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.

The use of ICT for Learning Guidance for Junior High School in Indonesia

In this paper, we will be present Guidance and Councelling (GC) class action research. The research was done because a fact that some students are still learning ways such as in elementary school. The research objective is to enhance the value of “academic performance report" grade by using ICT as GC Learning Guidance services. The research method was carried out with two cycles. First cycle is applying Learning Guidance services indirectly and not programmed. Second cycle into two implementing Learning Guidance services indirectly, programmed and using ICTs primarily mobile phones and computer media applications i.e. “m-NingBK©: Learning Guidance" and “screen saver: Learning Guidance". A research subject is a class VII student who has the lowest value of “academic performance report". The result is by using an indirect GC services with ICT there were significant changes.

Evaluation of Classifiers Based On I2C Distance for Action Recognition

Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.

Interactive Agents with Artificial Mind

This paper discusses an artificial mind model and its applications. The mind model is based on some theories which assert that emotion is an important function in human decision making. An artificial mind model with emotion is built, and the model is applied to action selection of autonomous agents. In three examples, the agents interact with humans and their environments. The examples show the proposed model effectively work in both virtual agents and real robots.

Development of Decision Support System for House Evaluation and Purchasing

Home is important for Chinese people. Because the information regarding the house attributes and surrounding environments is incomplete in most real estate agency, most house buyers are difficult to consider the overall factors effectively and only can search candidates by sorting-based approach. This study aims to develop a decision support system for housing purchasing, in which surrounding facilities of each house are quantified. Then, all considered house factors and customer preferences are incorporated into Simple Multi-Attribute Ranking Technique (SMART) to support the housing evaluation. To evaluate the validity of proposed approach, an empirical study was conducted from a real estate agency. Based on the customer requirement and preferences, the proposed approach can identify better candidate house with consider the overall house attributes and surrounding facilities.

Generation of Artificial Earthquake Accelerogram Compatible with Spectrum using the Wavelet Packet Transform and Nero-Fuzzy Networks

The principal purpose of this article is to present a new method based on Adaptive Neural Network Fuzzy Inference System (ANFIS) to generate additional artificial earthquake accelerograms from presented data, which are compatible with specified response spectra. The proposed method uses the learning abilities of ANFIS to develop the knowledge of the inverse mapping from response spectrum to earthquake records. In addition, wavelet packet transform is used to decompose specified earthquake records and then ANFISs are trained to relate the response spectrum of records to their wavelet packet coefficients. Finally, an interpretive example is presented which uses an ensemble of recorded accelerograms to demonstrate the effectiveness of the proposed method.

A Survey on Voice over IP over Wireless LANs

Voice over Internet Protocol (VoIP) is a form of voice communication that uses audio data to transmit voice signals to the end user. VoIP is one of the most important technologies in the World of communication. Around, 20 years of research on VoIP, some problems of VoIP are still remaining. During the past decade and with growing of wireless technologies, we have seen that many papers turn their concentration from Wired-LAN to Wireless-LAN. VoIP over Wireless LAN (WLAN) faces many challenges due to the loose nature of wireless network. Issues like providing Quality of Service (QoS) at a good level, dedicating capacity for calls and having secure calls is more difficult rather than wired LAN. Therefore VoIP over WLAN (VoWLAN) remains a challenging research topic. In this paper we consolidate and address major VoWLAN issues. This research is helpful for those researchers wants to do research in Voice over IP technology over WLAN network.

SMaTTS: Standard Malay Text to Speech System

This paper presents a rule-based text- to- speech (TTS) Synthesis System for Standard Malay, namely SMaTTS. The proposed system using sinusoidal method and some pre- recorded wave files in generating speech for the system. The use of phone database significantly decreases the amount of computer memory space used, thus making the system very light and embeddable. The overall system was comprised of two phases the Natural Language Processing (NLP) that consisted of the high-level processing of text analysis, phonetic analysis, text normalization and morphophonemic module. The module was designed specially for SM to overcome few problems in defining the rules for SM orthography system before it can be passed to the DSP module. The second phase is the Digital Signal Processing (DSP) which operated on the low-level process of the speech waveform generation. A developed an intelligible and adequately natural sounding formant-based speech synthesis system with a light and user-friendly Graphical User Interface (GUI) is introduced. A Standard Malay Language (SM) phoneme set and an inclusive set of phone database have been constructed carefully for this phone-based speech synthesizer. By applying the generative phonology, a comprehensive letter-to-sound (LTS) rules and a pronunciation lexicon have been invented for SMaTTS. As for the evaluation tests, a set of Diagnostic Rhyme Test (DRT) word list was compiled and several experiments have been performed to evaluate the quality of the synthesized speech by analyzing the Mean Opinion Score (MOS) obtained. The overall performance of the system as well as the room for improvements was thoroughly discussed.