Optical Characterization of a Microwave Plasma Torch for Hydrogen Production

Hydrogen sulfide (H2S) is a very toxic gas that is produced in very large quantities in the oil and gas industry. It cannot be flared to the atmosphere and Claus process based gas plants are used to recover the sulfur and convert the hydrogen to water. In this paper, we present optical characterization of an atmospheric pressure microwave plasma torch for H2S dissociation into hydrogen and sulfur. The torch is operated at 2.45 GHz with power up to 2 kW. Three different gases can simultaneously be injected in the plasma torch. Visual imaging and optical emission spectroscopy are used to characterize the plasma for varying gas flow rates and microwave power. The plasma length, emission spectra and temperature are presented. The obtained experimental results validate our earlier published simulation results of plasma torch.





References:
[1] T. Hammer, "Application of plasma technology in environmental
Techniques", Contrib. Plasma Phys., vol.39, pp.441-462, 1999.
[2] A. Bogaerts, E. Neyts, R. Gijbls, J. Mullen, " Gas discharge plasmas and
their applications", SpectrochimicaActa, vol. 57 B, pp.609-658, 2002.
[3] V. A. Abolentsev, et al, " Pulsed wet discharge as an effective means of
gas purification from H2S and organsulfur impurities", High energy Chemistry, vol. 29, pp.353-357,1995.
[4] A. Rani D, at al, "Plasma treatment of air pollution control residues",
Waste Management, vol. 28 (7), pp. 1254-1262,Aug. 2007.
[5] M. A. Malik, A. Ghaffar, S.A. Malik, " Water purification by electrical
discharges, Plasma Sources Sci. Techn., vol.10, pp. 82-91,2001.
[6] H. K.Yasuda (Ed.), Plasmapolymerization and plasma interactions with
polymeric materials, Wiley, New York, 1990.
[7] M. Laroussi, et al, "Images of biological samples undergoing
sterilization by a glow discharge at atmospheric pressure", IEEE Trans.
Plasma Sci., vol. 27, pp.34-35,1999.
[8] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharge
and Materials, Wiley, New York, 1994.
[9] A. Grill, Cold plasma in materials fabrication: from fundamentals to
applications, IEEE press, New York, 1994.
[10] J. R. Roth et al, "Aerodynamic flow acceleration using Paraelectric and
peristaltic electrohydrodynamic effects of a one atmosphere uniform
glow discharge plasma", Physics of Plasmas,vol.10(5), pp. 2127-2135,2003.
[11] L. Zajickova, et al, "Atmospheric pressure microwave torch for
synthesis of carbon nanotubes", Plasma Phys. Contr. Fusion, vol.47,pp
B655- B666, 2005.
[12] O. Jasek, et al, " Carbon nanotubes synthesis in microwave plasma torch
at atmospheric pressure" Materials Science and Engineering, vol. C26,
pp. 1189-1193, 2006.
[13] K. M. Greem, et al, "Electronic excitation temperature profiles in air
microwave plasma torch, IEEE Tran. Plasma Sci., vol. 29, pp.399-406, April 2001.
[14] A. T. Zander and G. M. Hieftje, "Microwave-supported discharges",
Appl. Spectrosc., vol. 35 (4), pp. 357-371, 1981.
[15] J. R. Roth, Industrial plasma engineering, vol. 1: Principles (IOP,
Bristol), 1995.
[16] P. P. Woskov, D. Y. Rhee, P. Thoma, D. R. Cohn, J. E. Surma, and C.
H.Titus, "Microwave plasma continuous emissions monitor for trace-metals in furnace exhaust", Rev. Sci. Instrum.,vol. 67 (10), pp.
3700-3707, 1996.
[17] M. Moisan, J. Hubert, J. Margot, G. Sauve', and Z. Zakrzewski,
Microwave Discharge: Fundamentals and Applications, edited by C. M.
Ferreira andM. Moisan, Plenum, New York, 1992,Chap. 1.
[18] J. Jonkers, et al, "On the electron temperatures and densities in plasmas
produced by the "torche à injection axiale",Spectrochim. Acta Part B,
vol. 5 (11)1, pp.1385-1392,Sept. 1996.
[19] M. Moisan, G. Sauve', Z. Zakrzewski, and J. Hubert, "An atmospheric
pressure waveguide-fed microwave plasma torch: the TIA
design",Plasma Sources Sci.Technol. vol. 3 (4), pp. 584-592, Nov. 1994.
[20] C. Prokisch, A. M. Bilgic, E. Voges, J. A. C. Broekaert, J. Jonkers, M.
vanSande, and J. A. M. van der Mullen, "Photographic plasma images
and electron number density as well as electron temperature mappings of
a plasma sustained with a modified argon microwave plasma torch
(MPT) measured by spatially resolved Thomson scattering",
Spectrochim. Acta part B, vol.54 (9), pp.1253-1266, Sept. 1999.
[21] Y. Okamoto, "A microwave-induced unmagnetized plasma source for
plasma processing", Plasma Sources Sci. Technol.vol. 5 (4), pp. 648-
652, Nov.1996.
[22] C. I. M. Beenakker, "A cavity for microwave-induced plasmas operated
in helium and argon at atmospheric pressure", Spectrochim. Acta part B,
vol. 31 (8-9), pp. 483-486, Dec.1976.
[23] K. Fallgatter, V. Svoboda, and J. D. Winefordner, "Physical and
analyticalaspects of a microwave excited plasma", Appl. Spectrosc., vol.
25 (3), pp. 347-352, 1971.
[24] T. G. Beuthe and J.S. Chang, "Chemical kinetic modeling of nonequilibrium
Ar-H2 thermal plasmas", Jpn. J. Appl. Phys., vol. 38,
pp.4576-4580, 1999.
[25] I. Ishii and A. Montaser, "A tutorial discussion on measurements of
rotational temperature in inductively coupled plasmas",
SpectrochimicaActa Part B, vol. 46 (8), pp.1197-1206, 1991.
[26] J. M. Williamson and C. A. Dejoseph, "Determination of gas
temperature in an open-air atmosphere pressure plasma torch from
resolved plasma emission", J. Appl. Phys., vol. 93 (4), pp. 1893-1898,
2003.
[27] T. Hasegawa and J. D. Winefordner, “Rotational, vibrational and
electronic excitation of a neutral nitrogen molecule in the ICP”,
SpectrochimicaActa Part B, vol. 42 (5), pp. 651-663, 1987.
[28] Z. Machala, et al, “Emission spectroscopy of atmospheric pressure
plasmas for bio-medical and environmental applications”,J. Molecular
Spectroscopy, vol. 243, pp. 194-201, 2007.
[29] B. Raeymaekers, J.A.C Broekaert, F.Leis. “Radially resolved rotational
temperatures in nitrogen-argon, oxygen-argon, air-argon and argon.
ICPs”,SpectrochemicaActa Part B, vol.43, pp.941-949, 1988.
[30] L. M Cohen, R. K Hanson, “Emission and laser-induced fluorescence
measurements in a supersonic jet of plasma heated nitrogen”, J
PhysD,vol. 25, pp. 331-351, 1992.
[31] C.Parigger, D. H Plemmons, J. O Hornkohl, J.W.L Lewis, “Temperature
measurements from frst-negative spectra produced by laser-induced
multiphoton ionization and optical breakdown of nitrogen”, Appl Opt.,
vol. 34, pp. 3331-3335, 1995.
[32] C. D Scott, H. E Blackwell,S.Arepalli, M. A Akundi, “Techniques for
estimating rotational and vibrational temperatures in nitrogen
arcjetflow,JThermophys Heat Transfer, vol. 12, pp. 457-464, 1998.
[33] P. P Woskov, A. K Hadidi, M. C Borras,P. Thomas, K. Green,G.
JFlores,“Spectroscopic diagnostics of an atmospheric microwave plasma
for monitoring metals pollution”, RevSciInstrum., vol. 70, pp. 489-492,
1999.
[34] C. O. Laux, et al, “Rotational temperature measurements in air and
nitrogen plasmas using the first negative system of ”,J. Quantitative
Spectroscopy &Radiative Transfer, vol. 68, pp. 473-482, 2001.
[35] U.S Department of Health and Human Services, Toxicological profile
for hydrogen sulfide, CAS No. 123-91-1, p.14, 2006:
http://www.atsdr.cdc.gov/toxprofiles/tp114.pdf.
[36] M. Sassi and N. Amira, “ Microwave-induced plasma torch for thermal
decomposition of H2S into hydrogen and sulfur” in Proc. 20th
International symposium on plasma chemistry-2011, Philadelphia, USA,
pp-1-4, July19-24, 2011.
[37] NajiAmira, “Microwave-induced plasma torch for thermal
decomposition of H2S into hydrogen and sulfur”, Master’s Thesis,
Mechanical Engineering, Masdar Institute of Science and Technology,
Abu Dhabi, August 2011.
[38] M. Sassi and N. Amira, “Chemical reactor network modeling of a
microwave plasma thermal decomposition of H2S into hydrogen and
sulfur”, International J. Hydrogen Energy, vol.37 (3), pp. 10010-10019,
July 2012.
[39] D. Robinson. “Heavy particles temperature measurements in a nitrogen
plasma by a spectroscopic method”, J. Quant. Spectroc. Radiat.
Transfer, vol. 4 (2), pp.335-342, March-April 1964.
[40] R. S. Mulliken, “The interpretation of band spectra. Part IIc,Empircal
band types,” Rev. Mod. Phys., vol. 3 (1),pp. 89-155,1931.
[41] G. Herzberg, Molecular Spectra and Molecular structure, I. Spectra of
diatomic molecules, van Nostrand,p. 208, New York, 1953.