Financial Information and Collective Bargaining: Conflicting or Complementing?

The research conducted in early seventies apparently assumed the existence of a universal decision model for union negotiators and furthermore tended to regard financial information as a ‘neutral’ input into a rational decision making process. However, research in the eighties began to question the neutrality of financial information as an input in collective bargaining rather viewing it as a potentially effective means for controlling the labour force. Furthermore, this later research also started challenging the simplistic assumptions relating particularly to union objectives which have underpinned the earlier search for universal union decision models. Despite the above developments there seems to be a dearth of studies in developing countries concerning the use of financial information in collective bargaining. This paper seeks to begin to remedy this deficiency. Utilising a case study approach based on two enterprises, one in the public sector and the other a multinational, the universal decision model is rejected and it is argued that the decision whether or not to use financial information is a contingent one and such a contingency is largely defined by the context and environment in which both union and management negotiators work. An attempt is also made to identify the factors constraining as well as promoting the use of financial information in collective bargaining, these being regarded as unique to the organisations within which the case studies are conducted.

Investigation of Long-Term Thermal Insulation Performance of Vacuum Insulation Panels with Various Enveloping Methods

To practically apply vacuum insulation panels (VIPs) to buildings or home appliances, VIPs have demanded long-term lifespan with outstanding insulation performance. Service lives of VIPs enveloped with Al-foil and three-layer Al-metallized envelope are calculated. For Al-foil envelope, the service life is longer but edge conduction is too large compared with the Al-metallized envelope. To increase service life even more, the proposed double enveloping method and metal-barrier-added enveloping method are further analyzed. The service lives of the VIP to employ two enveloping methods are calculated. Also, pressure increase and thermal insulation performance characteristics are investigated. For the metalbarrier- added enveloping method, effective thermal conductivity increase with time is close to that of Al-foil envelope, especially, for getter-inserted VIPs. For double enveloping method, if water vapor is perfectly adsorbed, the effect of service life enhancement becomes much greater. From these methods, the VIP can be guaranteed for service life of more than 20 years.

Water Saving in Arid Regions: Comparison of Innovative Techniques for Irrigation of Young Date Palms

In oases, the surface water resources are becoming increasingly scarce and groundwater resources, which generally have a poor quality due to the high levels of salinity, are often overexploited. Water saving have therefore become imperative for better oases sustainability. If drip irrigation is currently recommended in Morocco for saving water and valuing, its use in the sub-desert areas does not keep water safe from high evaporation rates. An alternative to this system would be the use of subsurface drip irrigation. This technique is defined as an application of water under the soil surface through drippers, which deliver water at rates generally similar to surface drip irrigation. As subsurface drip irrigation is a recently introduced in Morocco, a better understanding of the infiltration process around a buried source, in local conditions, and its impact on plant growth is necessarily required. This study aims to contribute to improving the water use efficiency by testing the performance of subsurface irrigation system, especially in areas where water is a limited source. The objectives of this research are performance evaluation in arid conditions of the subsurface drip irrigation system for young date palms compared to the surface drip. In this context, an experimental test is installed at a farmer’s field in the area of Erfoud (Errachidia Province, southeastern Morocco), using the subsurface drip irrigation system in comparison with the classic drip system for young date palms. Flow measurement to calculate the uniformity of the application of water was done through two methods: a flow measurement of drippers above the surface and another one underground. The latter method has also helped us to estimate losses through evaporation for both irrigation techniques. In order to compare the effect of two irrigation modes, plants were identified for each type of irrigation to monitor certain agronomic parameters (cumulative numbers of palms and roots development). Experimentation referred to a distribution uniformity of about 88%; considered acceptable for subsurface drip irrigation while it is around 80% for the surface drip irrigation. The results also show an increase in root development and in the number of palm, as well as a substantial water savings due to lower evaporation losses compared to the classic drip irrigation. The results of this study showed that subsurface drip irrigation is an efficient technique, which allows sustainable irrigation in arid areas.

Deterioration of Groundwater in Arid Environments: What Impact in Oasis Dynamics? Case Study of Tafilalet, Morocco

Oases are complex and fragile agro-ecosystems. They have always existed in environments characterized by an arid climate, scarcity of rainfall, high temperatures and high evaporation. These palms have grown up despite the severity of the physical characteristics thanks to the water's existence and irrigation practice. The oases are generally spread along non-perennial rivers (wadis), shallow water table or deep artesian groundwater. However, the sustainability of oasis system is threatened by water scarcity and declining of water table levels particularly in arid areas. Located in the southern east area of Morocco, Tafilalet plain encompasses one of the largest palm groves in the kingdom. In recent years, this area has become increasingly threatened by water shortage and has seen a sharp deterioration under the effect of several combined anthropogenic and climatic factors. The Bayoud disease, successive years of drought, Hassan Addakhil dam construction etc are all factors that have affected both water and phoenicicole heritage of the area. The objective of this study is to understand the interaction between qualitative and quantitative degradation of groundwater resources, and the palm grove dynamics, while reviewing the assumption that groundwater resources contribute in a direct way to the conservation of this oasis agroecosystem. A historical analysis tracing both the oasis dynamics and the groundwater evolution has been established. Data were collected from satellite images, surveys with different actors (farmers, Regional Office for Agricultural Development, Basin agency...). They were complemented by a synthesis of numerous technical reports in the area. The results showed that within 40 years, the thickness of the groundwater table has dropped in 50 %. Along with this, there has been a downsizing of date palm by 50 %. Areas with higher groundwater level were the least affected by the downsizing. So we can say that the shallow groundwater contribute significantly and directly to the water supply of date palm through its root system, and largely ensures the oasis ecosystem sustainability.

Angiographic Evaluation of ETT (Treadmill) Positive Patients in a Tertiary Care Hospital of Bangladesh

To evaluate the factors which predetermine the coronary artery disease in patients having positive Exercise Tolerance Test (ETT) that is treadmill results and coronary artery findings. This descriptive study was conducted at Department of Cardiology, Ibrahim Cardiac Hospital & Research Institute, Dhaka, Bangladesh from 1st January, 2014 to 31st August, 2014. All patients who had done ETT (treadmill) for chest pain diagnosis were studied. One hundred and four patients underwent coronary angiogram after positive treadmill result. Patients were divided into two groups depending upon the angiographic findings, i.e. true positive and false positive. Positive treadmill test patients who have coronary artery involvement these are called true positive and who have no involvement they are called false positive group. Both groups were compared with each other. Out of 104 patients, 81 (77.9%) patients had true positive ETT and 23 (22.1%) patients had false positive ETT. The mean age of patients in positive ETT was 53.46± 8.06 years and male mean age was 53.63±8.36 years and female was 52.87±7.0 years. Sixty nine (85.19%) male patients and twelve (14.81%) female patients had true positive ETT, whereas 15 (65.21%) males and 8 (34.79%) females had false positive ETT, this was statistically significant (p

Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete

The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e. curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments.

Removal of Tartrazine Dye form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite

In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.

A Systemic Maturity Model

Maturity models, used descriptively to explain changes in reality or normatively to guide managers to make interventions to make organizations more effective and efficient, are based on the principles of statistical quality control and PDCA continuous improvement (Plan, Do, Check, Act). Some frameworks developed over the concept of maturity models include COBIT, CMM, and ITIL. This paper presents some limitations of traditional maturity models, most of them related to the mechanistic and reductionist principles over which those models are built. As systems theory helps the understanding of the dynamics of organizations and organizational change, the development of a systemic maturity model can help to overcome some of those limitations. This document proposes a systemic maturity model, based on a systemic conceptualization of organizations, focused on the study of the functioning of the parties, the relationships among them, and their behavior as a whole. The concept of maturity from the system theory perspective is conceptually defined as an emergent property of the organization, which arises as a result of the degree of alignment and integration of their processes. This concept is operationalized through a systemic function that measures the maturity of organizations, and finally validated by the measuring of maturity in some organizations. For its operationalization and validation, the model was applied to measure the maturity of organizational Governance, Risk and Compliance (GRC) processes.

Bio-Estimation of Selected Heavy Metals in Shellfish and Their Surrounding Environmental Media

Due to the determination of the pollution status of fresh resources in the Egyptian territorial waters is very important for public health; this study was carried out to reveal the levels of heavy metals in the shellfish and their environment and its relation to the highly developed industrial activities in those areas. A total of 100 shellfish samples from the Rosetta, Edku, El-Maadiya, Abo-Kir and El-Max coasts [10 crustaceans (shrimp) and 10 mollusks (oysters)] were randomly collected from each coast. Additionally, 10 samples from both the water and the sediment were collected from each coast. Each collected sample was analyzed for cadmium, chromium, copper, lead and zinc residues using a Perkin Elmer atomic absorption spectrophotometer (AAS). The results showed that the levels of heavy metals were higher in the water and sediment from Abo-Kir. The heavy metal levels decreased successively for the Rosetta, Edku, El-Maadiya, and El-Max coasts, and the concentrations of heavy metals, except copper and zinc, in shellfish exhibited the same pattern. For the concentration of heavy metals in shellfish tissue, the highest was zinc and the concentrations decreased successively for copper, lead, chromium and cadmium for all coasts, except the Abo-Kir coast, where the chromium level was highest and the other metals decreased successively for zinc, copper, lead and cadmium. In Rosetta, chromium was higher only in the mollusks, while the level of this metal was lower in the crustaceans; this trend was observed at the Edku, El-Maadiya and El-Max coasts as well. Herein, we discuss the importance of such contamination for public health and the sources of shellfish contamination with heavy metals. We suggest measures to minimize and prevent these pollutants in the aquatic environment and, furthermore, how to protect humans from excessive intake.

Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

In this work, a Multi-Level Artificial Bee Colony (called MLABC) for optimizing numerical test functions is presented. In MLABC, two species are used. The first species employs n colonies where each of them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information. The proposed algorithm is tested on a set of well-known test functions. The results show that MLABC algorithm provides efficiency and robustness to solve numerical functions.

Biohydrogen Production from Starch Residues

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogendeficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Correlation and Prediction of Biodiesel Density

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

The Effects of Sewage Sludge Usage and Manure on Some Heavy Metals Uptake in Savory (Satureja hortensis L.)

In recent decades with the development of technology and lack of food sources, sewage sludge in production of human foods is inevitable. Various sources of municipal and industrial sewage sludge that is produced can provide the requirement of plant nutrients. Soils in arid, semi-arid climate of central Iran that most affected by water drainage, iron and zinc deficiencies, using of sewage sludge is helpful. Therefore, the aim of this study is investigation of sewage sludge and manure application on Ni, Pb and Cd uptake by Savory. An experiment in a randomized complete block design with three replications was performed. Sewage sludge treatments consisted of four levels, control, 15, 30, 80 tons per hectares; the manure was used in four levels of control, 20, 40 and 80 tons per hectare. Results showed that the wet and dry weights was not affected by sewage sludge using, while, manure has significant effect on them. The effect of sewage sludge on the cadmium and lead concentrations were significant. Interactions of sewage sludge and manure on dry weight values were not significant. Compare mean analysis showed that increasing the amount of sewage sludge had no significant effect on cadmium concentration and it reduced when sewage sludge usage increased. This is probably due to increased plant growth and reduced concentrations of these elements in the plant.

Categories of Botnet: A Survey

Botnets are one of the most serious and widespread cyber threats. Today botnets have been facilitating many cybercrimes, especially financial, top secret thefts. Botnets can be available for lease in the market and are utilized by the cybercriminals to launch massive attacks like DDoS, click fraud, phishing attacks etc., Several large institutions, hospitals, banks, government organizations and many social networks such as twitter, facebook etc., became the target of the botmasters. Recently, noteworthy researches have been carried out to detect bot, C&C channels, botnet and botmasters. Using many sophisticated technologies, botmasters made botnet a titan of the cyber world. Innumerable challenges have been put forth by the botmasters to the researchers in the detection of botnet. In this paper we present a survey of different types of botnet C&C channels and also provide a comparison of various botnet categories. Finally we hope that our survey will create awareness for forthcoming botnet research endeavors.

Experimental Investigation on Tsunami Acting on Bridges

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.

Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil

Asphaltic concrete for pavement construction in India are produced by using crushed stone, gravels etc. as aggregate. In north-Eastern region of India, there is a scarcity of stone aggregate. Therefore the road engineers are always in search of an optional material as aggregate which can replace the regularly used material. The purpose of this work was to evaluate the utilization of substandard or marginal aggregates in flexible pavement construction. The investigation was undertaken to evaluate the effects of using lower quality aggregates such as over burnt brick aggregate on the preparation of asphalt concrete for flexible pavements. The scope of this work included a review of available literature and existing data, a laboratory evaluation organized to determine the effects of marginal aggregates and potential techniques to upgrade these substandard materials, and a laboratory evaluation of these upgraded marginal aggregate asphalt mixtures. Over burnt brick aggregates are water susceptible and can leads to moisture damage. Moisture damage is the progressive loss of functionality of the material owing to loss of the adhesion bond between the asphalt binder and the aggregate surface. Hence zycosoil as an anti striping additive were evaluated in this study. This study summarizes the results of the laboratory evaluation carried out to investigate the properties of asphalt concrete prepared with zycosoil modified over burnt brick aggregate. Marshall specimen were prepared with stone aggregate, zycosoil modified stone aggregate, over burnt brick aggregate and zycosoil modified over burnt brick aggregate. Results show that addition of zycosoil with stone aggregate increased stability by 6% and addition of zycosoil with over burnt brick aggregate increased stability by 30%.

Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

The Effect of Pilates Method in Scholar’s Trunk Strength and Hamstring Flexibility: Gender Differences

Musculoskeletal injuries in school children could be reduced improving trunk strength and hamstring flexibility. Low levels of trunk muscle strength and hamstring flexibility may result in acute and musculoskeletal chronic diseases. The Pilates Method can be appropriate to improve these physical condition attributes and has been rarely employed by this social group. On the other hand, it has been shown that trunk strength and flexibility are different between genders, but there is no evidence about the effect of exercise programs designed to improve both items in school children. Therefore the objective of this study was to measure the effect of a six-week Pilates-based exercise program in 14 year old school children trunk strength and hamstring flexibility, establishing differences in gender. The sample was composed of 57 students divided into experimental group (EG; n=30) and control group (CG; n=27). Bench Trunk Curl test (BTC), Sörensen test and Toe-touch test (TT) were used to measure dynamic muscular resistance in trunk flexion, isometric strength in trunk extension and hamstring flexibility, respectively. EG utilized the Pilates exercise program during six-weeks (2 days/week, 55minutes/session). After this period of training, EG improved trunk strength and hamstring flexibility significantly but there were no significant differences within CG. Although boys were better in BTC test and girls were better in TT test, there were no significant differences between them.

Oxidative and Hormonal Disruptions Underlie Bisphenol A - Induced Testicular Toxicity in Male Rabbits

The presence of endocrine-disrupting compounds, such as bisphenol A (BPA), in the environment can cause serious health problems. However, there are controversial opinions. This study investigated the reproductive, metabolic, oxidative and immunologic-disrupting effects of bisphenol A in male rabbits. Rabbits were divided into five groups. The first four rabbit groups were administered oral BPA (1, 10, 50, or 100 mg/kg/day) for ten weeks. The fifth group was administered corn oil as the vehicle. BPA significantly decreased serum testosterone, estradiol and the free androgen index (FAI) and significantly increased sex hormone binding globulin (SHBG) compared with the placebo group. The higher doses of BPA showed a significant decrease in follicular stimulating hormone (FSH) and luteinizing hormone (LH). A significant increase in blood glucose levels was identified in the BPA groups. The non-significant difference in insulin levels is a novel finding. The cumulative testicular toxicity of BPA was clearly demonstrated by the dose-dependent decrease in absolute testes weight, primary measures of semen quality and a significant increase in testicular malonaldehyde (MDA). Moreover, BPA significantly decreased total antioxidant capacity (TAC) and significantly increased immunoglobulin G (IgG) at the highest concentration. Our results suggest that BPA, especially at higher doses, is associated with many adverse effects on metabolism, oxidative stress, immunity, sperm quality and markers of androgenic action.

Application of GAMS and GA in the Location and Penetration of Distributed Generation

Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. DG allocation and capacity determination is a nonlinear optimization problem. The objective function of this problem is the minimization of the total loss of the distribution system. Also high levels of penetration of DG are a new challenge for traditional electric power systems. This paper presents a new methodology for the optimal placement of DG and penetration level of DG in distribution system based on General Algebraic Modeling System (GAMS) and Genetic Algorithm (GA).