Combined Hydrothermal Synthesis of Zinc and Magnesium Borates at 100oC Using ZnO, MgO and H3BO3

Magnesium borate(MB) istechnical ceramic for high heat-resisting, corrosion-resisting, super mechanical strength, superinsulation, light weight, high strength, and high coefficient of elasticity. Zinc borate (ZB) can be used as multi-functional synergistic additives with flame retardant additives in polymers. The most important properties are low solubility in water and high dehydration temperature. ZB dehydrates above 290°C and anhydrous ZB has thermal resistance about 400°C. In this study, the raw materials of ZnO, MgO and H3BO3 were used with mole ratio of 1:1:9. With the starting materials hydrothermal method was applied at a temperature of 100oC. The reaction time was determined as 30, 60, 90 and 120 minutes after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result, the forms of Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.

Influence of City Environment to the Regional Development in Baltic Countries

Economic processes underway in the country directly and indirectly affect the welfare of the people and the social environment, starting with job security and having a direct impact on the qualitative and safe living environment. The paper describes existing situation and gives analysis of the regional development policy determination and implementation in the all three Baltic countries. According statistical indicators there are differences between implementation of the regional development activities between all Baltic countries and in regions of inside each country. It is analyzed more detail differences between regions in Latvia, Lithuania and Estonia according possibility to evaluate success of development processes in regions of the Baltic countries. The descriptive analyze of documents, statistical indicators at national level and regional level were used in the research.

Behavior of Concrete Slab Track on Asphalt Trackbed Subjected to Thermal Load

Concrete track slab and asphalt trackbed are being introduced in Korea for providing good bearing capacity, durability to the track and comfortable rideness to passengers. Such a railway system has been designed by the train load so as to ensure stability. But there is lack of research and design for temperature changes which influence the behavior characteristics of concrete and asphalt. Therefore, in this study, the behavior characteristics of concrete track slab subjected to varying temperatures were analyzed through structural analysis using the finite element analysis program. The structural analysis was performed by considering the friction condition on the boundary surfaces in order to analyze the interaction between concrete slab and asphalt trackbed. As a result, the design of the railway system should be designed by considering the interaction and temperature changes between concrete track slab and asphalt trackbed.

Design of Walking Beam Pendle Axle Suspension System

This paper deals with design of walking beam pendel axle suspension system. This axles and suspension systems are mainly required for transportation of heavy duty and Over Dimension Consignment (ODC) cargo, which is exceeding legal limit in terms of length, width and height. Presently, in Indian transportation industry, ODC movement growth rate has increased in transportation of bridge sections (pre-cast beams), transformers, heavy machineries, boilers, gas turbines, windmill blades etc. However, current Indian standard road transport vehicles are facing lot of service and maintenance issues due to non availability of suitable axle and suspension to carry the ODC cargoes. This in turn will lead to increased number of road accidents, bridge collapse and delayed deliveries, which finally result in higher operating cost. Understanding these requirements, this work was carried out. These axles and suspensions are designed for optimum self – weight with maximum payload carrying capacity with better road stability.

Hydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water

Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Ru/Al2O3 was the catalyst used in the gasification reactions. All of the experiments were performed under a constant pressure of 25 MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600oC) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.

Heat Transfer to Laminar Flow over a Double Backward-Facing Step

Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream are insulated with bottom of downstream is heated. The results show increase in Nusselt number with increases of Reynolds number for all cases and the maximum of Nusselt number happens at the first step in compared to the second step. Due to increase of cross section area of downstream to generate sudden expansion then Nusselt number decrease but the profile of Nusselt number keep same trend for all cases where increase after the first and second steps. Recirculation region after the first and second steps are denoted by contour of streamline velocity. The higher augmentation of heat transfer rate observed for case 1 at Reynolds number of 512 and heat flux q=2000 W/m2.

Effect of Self-Compacting Concrete and Aggregate Size on Anchorage Performance at Highly Congested Reinforcement Regions

At highly congested reinforcement regions, which is common at beam-column joint area, clear spacing between parallel bars becomes less than maximum normal aggregate size (20mm) which has not been addressed in any design code and specifications. Limited clear spacing between parallel bars (herein after thin cover) is one of the causes which affect anchorage performance. In this study, an experimental investigation was carried out to understand anchorage performance of reinforcement in Self-Compacting Concrete (SCC) and Normal Concrete (NC) at highly congested regions under uni-axial tensile loading.  Column bar was pullout whereas; beam bars were offset from column reinforcement creating thin cover as per site condition. Two different sizes of coarse aggregate were used for NC (20mm and 10mm). Strain gauges were also installed along the bar in some specimens to understand the internal stress mechanism. Test results reveal that anchorage performance is affected at highly congested reinforcement region in NC with maximum aggregate size 20mm whereas; SCC and Small Aggregate (10mm) gives better structural performance. 

Impact of Nonthermal Pulsed Electric Field on Bioactive Compounds and Browning Activity in Emblica officinalis Juice

The effect of nonthermal pulsed electric field (PEF) and thermal treatment (90⁰C for 60s) was studied on quality parameters of emblica officinalis juice for the period of 6 weeks at 4⁰C using monopolar rectangular pulse of 1µs width. The PEF treatment was given using static chamber at 24kV/cm for 500µs. The quality of emblica officinalis juice was investigated in terms of non enzymatic browning index (NEBI), 5-hydroxymethyl-2-furfural (HMF), total polyphenol content and antioxidant capacity. ⁰Brix, pH and conductivity were evaluated as physical parameters. The aim of the work was to investigate the effect of PEF on the retention of bioactive compounds and retardation of browning activity. The results showed that conventional thermal treatment had led to a significant (p < 0.05) decrease of 48.15% in polyphenol content (129.56 mg of GAE L-1), with higher NEBI and HMF formation (p < 0.05) whilst PEF suppressed NEBI and retained higher polyphenol compounds (168.59 mg GAE L-1) with limiting the loss to 32.56% along maximum free radical scavenging activity (92.07%). However, pH, ⁰brix and electrical conductivity of treated juice samples remain unaffected. Therefore, PEF can be considered as an effective nonthermal treatment for retaining bioactive compounds along suppressing browning of emblica juice.  

Study of Incineration of Acacia Wood Chips for Biomass Power Plant of the Royal Thai Navy in Sattahip, Chonburi Province, Thailand

This research is aimed to find optimal values of parameters of acacia wood chips combustion in a bubbling fluidized bed for electrification within the area of the Royal Thai Navy in Sattahip, Chonburi province, Thailand. The size of wood chips falls in the range of 25 mm in diameter. The bed temperature is set within the range of 800±10 oC with the air flow rate of 2.1-3.1 m/min corresponding to the air-fuel ratio between 0.71 to 1.03. The resulting thermal efficiency is approximately 95% with a thermal output of 474.76 kWth, which produced the electricity 0.131 kW-hr.

Re-Examination of Louis Pasteur’s S-Shaped Flask Experiment

No negative control nor control to prevent microbes from escaping was set when the S-shaped flask experiments were performed by Pasteur. Microscope was not used to observe the media in the flasks. Louis Pasteur’s S-shaped flask experiment was re-examined by using U-shaped flasks, modified S-shaped flasks and microscope. A mixture of microbes was isolated from the room air, from which one rod-shaped Bacillus species with proposed name Bacillus gaso-mobilis sp nov and one grape-shaped Staphylococcus species with proposed name of Staphylococcus gaso-mobilis sp nov were identified. Their penicillin and ampicillin resistant strains containing plasmids were isolated. These bacteria could change color, produce odor and automatically move in the air. They did not form colonies on solid media. They had a high suspension capacity in liquid media. Their light absorbance peaked at the wave length of 320 nm.  It was concluded that there were flaws with Louis Pasteur’s S-shaped flask experiments. 

Analysis of the Energetic Feature of the Loaded Gait with Variation of the Trunk Flexion Angle

The purpose of the research is to investigate the energetic feature of the backpack load on soldier’s gait with variation of the trunk flexion angle. It is believed that the trunk flexion variation of the loaded gait may cause a significant difference in the energy cost which is often in practice in daily life. To this end, seven healthy Korea military personnel participated in the experiment and are tested under three different walking postures comprised of the small, natural and large trunk flexion. There are around 5 degree differences of waist angle between each trunk flexion. The ground reaction forces were collected from the force plates and motion kinematic data are measured by the motion capture system. Based on these data, the impulses, momentums and mechanical works done on the center of body mass (COM) during the double support phase were computed. The result shows that the push-off and heel strike impulse are not relevant to the trunk flexion change, however the mechanical work by the push-off and heel strike were changed by the trunk flexion variation. It is because the vertical velocity of the COM during the double support phase is increased significantly with an increase in the trunk flexion. Therefore, we can know that the gait efficiency of the loaded gait depends on the trunk flexion angle. Also, even though the gravitational impulse and pre-collision momentum are changed by the trunk flexion variation, the after-collision momentum is almost constant regardless of the trunk flexion variation.

GIC-Based Adsorbents for Wastewater Treatment through Adsorption and Electrochemical-Regeneration

Intercalation imparts interesting features to the host graphite material. Two different types of intercalated compounds called (GIC-bisulphate or Nyex 1000 and GIC-nitrate or Nyex 3000) were tested for their adsorption capacity and ability to undergo electrochemical regeneration. It was found that Nyex 3000 showed comparatively slow kinetics along with reduced adsorption capacity to one half for acid violet 17 as adsorbate. Acid violet 17 was selected as model organic pollutant for evaluating comparative performance of said adsorbents. Both adsorbent materials showed 100% regeneration efficiency as achieved by passing a charge of 36 C g-1 at a current density of 12 mA cm-2 and a treatment time of 60 min.  

Derivation of Darcy’s Law using Homogenization Method

Darcy’s Law is a well-known constitutive equation describing the flow of a fluid through a porous medium. The equation shows a relationship between the superficial or Darcy velocity and the pressure gradient which was first experimentally observed by Henry Darcy in 1855-1856. In this study, we apply homogenization method to Stokes equation in order to derive Darcy’s Law. The process of deriving the equation is complicated, especially in multidimensional domain. Thus, for the sake of simplicity, we use the indicial notation as well as the homogenization. This combination provides a smooth, simple and easy technique to derive Darcy’s Law.

Thermo-Elastic Properties of Artificial Limestone Bricks with Wood Sawdust

In this study, artificial limestone brick samples are produced by using wood sawdust wastes (WSW) having different grades of sizes and limestone powder waste (LPW). The thermo-elastic properties of produced brick samples in various WSW amounts are investigated. At 30% WSW replacement with LPW in the brick sample the thermal conductivity value is effectively reduced and the reduction in the thermal conductivity value of brick sample at 30% WSW replacement with LPW is about 38.9% as compared with control sample. The energy conservation in buildings by using LPW and WSW in masonry brick material production having low thermal conductivity reduces energy requirements. A strong relationship is also found among the thermal conductivity, unit weight and ultrasonic pulse velocity values of brick samples produced. It shows a potential to be used for walls, wooden board substitute, alternative to the concrete blocks, ceiling panels, sound barrier panels, absorption materials etc.

Strengthening of RC Beams Containing Large Opening at Flexure with CFRP laminates

This paper presents the study of strengthening R/C beams with large circular and square opening located at flexure zone by Carbon Fiber Reinforced Polymer (CFRP) laminates. A total of five beams were tested to failure under four point loading to investigate the structural behavior including crack patterns, failure mode, ultimate load and load deflection behaviour. Test results show that large opening at flexure reduces the beam capacity and stiffness; and increases cracking and deflection. A strengthening configuration was designed for each un-strengthened beams based on their respective crack patterns. CFRP laminates remarkably restore the beam capacity of beam with large circular opening at flexure location while 10% re-gain of beam capacity with square opening. The use of CFRP laminates with the designed strengthening configuration could significantly reduce excessive cracking and deflection and increase the ultimate capacity and stiffness of beam.

On using PEMFC for Electrical Power Generation on More Electric Aircraft

The electrical power systems of aircrafts have made serious progress in recent years because the aircrafts depend more and more on the electricity. There is a trend in the aircraft industry to replace hydraulic and pneumatic systems with electrical systems, achieving more comfort and monitoring features and enlarging the energetic efficiency. Thus, was born the concept More Electric Aircraft. In this paper is analyzed the integration of a fuel cell into the existing electrical generation and distribution systems of an aircraft. The dynamic characteristics of fuel cell systems necessitate an adaptation of the electrical power system. The architecture studied in this paper consists of a 50kW fuel cell, a dc to dc converter and several loads. The dc to dc converter is used to step down the fuel cell voltage from about 625Vdc to 28Vdc.

Nuclear Power Generation and CO2 Abatement Scenarios in Taiwan

Taiwan was the first country in Asia to announce “Nuclear-Free Homeland" in 2002. In 2008, the new government released the Sustainable Energy Policy Guidelines to lower the nationwide CO2 emissions some time between 2016 and 2020 back to the level of year 2008, further abatement of CO2 emissions is planed in year 2025 when CO2 emissions will decrease to the level of year 2000. Besides, under consideration of the issues of energy, environment and economics (3E), the new government declared that the nuclear power is a carbon-less energy option. This study analyses the effects of nuclear power generation for CO2 abatement scenarios in Taiwan. The MARKAL-MACRO energy model was adopted to evaluate economic impacts and energy deployment due to life extension of existing nuclear power plants and build new nuclear power units in CO2 abatement scenarios. The results show that CO2 abatement effort is expensive. On the other hand, nuclear power is a cost-effective choice. The GDP loss rate in the case of building new nuclear power plants is around two thirds of the Nuclear-Free Homeland case. Nuclear power generation has the capacity to provide large-scale CO2 free electricity. Therefore, the results show that nuclear power is not only an option for Taiwan, but also a requisite for Taiwan-s CO2 reduction strategy.

A Meta-Heuristic Algorithm for Set Covering Problem Based on Gravity

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving large size set covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the set covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

Scheduling for a Reconfigurable Manufacturing System with Multiple Process Plans and Limited Pallets/Fixtures

A reconfigurable manufacturing system (RMS) is an advanced system designed at the outset for rapid changes in its hardware and software components in order to quickly adjust its production capacity and functionally. Among various operational decisions, this study considers the scheduling problem that determines the input sequence and schedule at the same time for a given set of parts. In particular, we consider the practical constraints that the numbers of pallets/fixtures are limited and hence a part can be released into the system only when the fixture required for the part is available. To solve the integrated input sequencing and scheduling problems, we suggest a priority rule based approach in which the two sub-problems are solved using a combination of priority rules. To show the effectiveness of various rule combinations, a simulation experiment was done on the data for a real RMS, and the test results are reported.

Positive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters

In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method.