Sustainable Traditional Architecture and Urban Planning in Hot-Arid Climate of Iran

The aim of sustainable architecture is to design buildings with the least adverse effects on the environment and provide better conditions for people. What building forms make the best use of land? This question was addressed in the late 1960s at the center of Land Use and Built Form Studies in Cambridge. This led to a number of influential papers which had a great influence on the practice of urban design. This paper concentrates on the results of sustainability caused by climatic conditions in Iranian traditional architecture in hot-arid regions. As people spent a significant amount of their time in houses, it was very important to have such houses to fulfill their needs physically and spiritually as well as satisfying their cultural and religious aspects of their lifestyles. In a vast country such as Iran with different climatic zones, traditional builders have presented series of logical solutions for human comfort. These solutions have been able to response to the environmental problems for a long period of time. As a result, by considering the experience in traditional architecture of hot–arid climate in Iran, it is possible to attain sustainable architecture.

Comparative Performance Analysis of Nonlinearity Cancellation Techniques for MOS-C Realization in Integrator Circuits

In this paper, a comparative performance analysis of mostly used four nonlinearity cancellation techniques used to realize the passive resistor by MOS transistors, is presented. The comparison is done by using an integrator circuit which is employing sequentially Op-amp, OTRA and ICCII as active element. All of the circuits are implemented by MOS-C realization and simulated by PSPICE program using 0.35μm process TSMC MOSIS model parameters. With MOS-C realization, the circuits became electronically tunable and fully integrable which is very important in IC design. The output waveforms, frequency responses, THD analysis results and features of the nonlinearity cancellation techniques are also given.

CFD Analysis of Passive Cooling Building by Using Solar Chimney System

This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings.

A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation

We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.

I²C Master-Slave Integration

This paper describes I²C Slave implementation using I²C master obtained from the OpenCores website. This website provides free Verilog and VHDL Codes to users. The design implementation for the I²C slave is in Verilog Language and uses EDA tools for ASIC design known as ModelSim from Mentor Graphic. This tool is used for simulation and verification purposes. Common application for this I²C Master-Slave integration is also included. This paper also addresses the advantages and limitations of the said design.

Shariah Compliance Space Planning for Hotel Room Design

This paper illustrates the background of various concepts, approaches, terminologies used to describe the basic framework of an Islamic Hotel Room design. This paper reviews the theoretical views in establishing a suitable and optimum environment for Muslim as well as non-Muslim guests in hotel rooms while according to shariah. It involves a few research methodologies that requires the researcher to study on a few characteristics needed to create more efficient rooms in terms of social interaction, economic growth and other tolerable elements. This paper intends on revealing the elements that are vital and may contribute for hotels in achieving a more conclusive research on space planning for hotel rooms focusing on the shariah and Muslim guests. Malaysia is an Islamic country and has billion of tourists coming over for business and recreational purposes. Therefore, having a righteous environment that best suit this target user is important in terms of generating the economy as well as providing a better understanding to the community on the benefits of applying these qualities in a conventional resort design.

Analysis of the Learners’ Responses of the Adjusted Rorschach Comprehensive System: Critical Psychological Perspective

The study focused on the analysis of the Adjusted Rorschach Comprehensive System’s responses. The objective of this study is to analyse the participants’ response rate of the Adjusted Rorschach Comprehensive System with regards to critical psychology approach. The use of critical psychology theory in this study was crucial because it responds to the current inadequate western theory or practice in the field of psychology. The study adopted a qualitative approach and a case study design. The study was grounded on interpretivist paradigm. The sample size comprised six learners (three boys and three girls, aged of 14 years) from historically disadvantaged school in the Western Cape, South Africa. The Adjusted Rorschach Comprehensive System (ARCS) administration procedure, biographical information, semi-structured interviews, and observation were used to collect data. Data was analysed using thematic framework. The study found out that, factors that increased the response rates during the administration of ARCS were, language, seating arrangement, drawing, viewing, and describing. The study recommended that, psychological test designers take into consideration the philosophy or worldviews of the local people for whom the test is designed to minimize low response rates.

GSA-Based Design of Dual Proportional Integral Load Frequency Controllers for Nonlinear Hydrothermal Power System

This paper considers the design of Dual Proportional- Integral (DPI) Load Frequency Control (LFC), using gravitational search algorithm (GSA). The design is carried out for nonlinear hydrothermal power system where generation rate constraint (GRC) and governor dead band are considered. Furthermore, time delays imposed by governor-turbine, thermodynamic process, and communication channels are investigated. GSA is utilized to search for optimal controller parameters by minimizing a time-domain based objective function. GSA-based DPI has been compared to Ziegler- Nichols based PI, and Genetic Algorithm (GA) based PI controllers in order to demonstrate the superior efficiency of the proposed design. Simulation results are carried for a wide range of operating conditions and system parameters variations.

Bioconversion of Oranges Wastes for Pectinase Production Using Aspergillus niger under Solid State Fermentation

The influence of cultivation factors such as content of ammonium sulfate, glucose and water in the culture medium and particle size of dry orange waste, on their bioconversion for pectinase production was studied using complete factorial design. A polygalacturonase (PG) was isolated using ion exchange chromatography under gradient elution 0-0,5 m/l NaCl (column equilibrate with acetate buffer pH 4,5), subsequently by sephadex G75 column chromatography was applied and the molecular weight was obtained about 51,28 KDa. Purified PG enzyme exhibits a pH and temperature optima of activity at 5 and 35°C respectively. Treatment of apple juice by purified enzyme extract yielded a clear juice, which was competitive with juice yielded by pure Sigma Aldrich Aspergillus niger enzyme.

A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization

Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.

Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System

Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.

A Framework to Assess the Maturity of Customer Involvement in the Service Design of Product-Service Systems

This paper develops and investigates a framework for the assessment of customer involvement in the service design process of result oriented product-service systems in order to improve the service offering in a business-to-business (B2B) context. The framework comprises five main criteria and fifteen sub-criteria that contribute to customer involvement in a hierarchy using a maturity grid to highlight the strengths and weaknesses for each criterion. To develop the customer involvement framework, an extensive literature review related to service design, result oriented product-service system (PSS) and customer involvement in service design was carried out. Key factors that significantly influence customer involvement from industry and literature were identified to develop the framework. A major contribution of the developed framework includes a hierarchy of appropriate criteria for assessing customer involvement in the service design process within results oriented PSS; the definition of four maturity levels which are suitable to describe the whole spectrum of customer involvement in the service design process; and finally, The paper concludes by enabling service providers to: take proactive decisions; screen and evaluate new services; improve perceived service quality; and provide barriers against imitation.

Experimental Study of Steel Slag Used as Aggregate in Asphalt Mixture

Steel slag is a by-product of the steel industry and can be used potentially as aggregate in the asphalt mixture. This study evaluates the use of Steel Slag Aggregates (SSA) as a substitute for natural aggregates in the production of hot mix asphalt (HMA) for road construction. Based on intensive laboratory testing program, the characteristic properties of SSA were assessed to determine its suitability to be used in HMA. Four different percentages (0, 50, 75, and 100%) of SSA were used, and the proposed mix designs for HMA were conducted in accordance with Marshall mix design. The experiment results revealed that the addition of SSA has a significant improvement on the properties of HMA. An increase in density and stability and a reduction in flow and air voids values were clearly observed in specimens prepared with 100% SSA. It is concluded that the steel slag can be considered reasonable alternative source of aggregate for concrete asphalt mixture production.

The Quality of Public Space in Mexico City: Current State and Trends

Public space is essential to strengthen the social and urban fabric and the social cohesion; there lies the importance of its study. Hence, the aim of this paper is to analyze the quality of public space in the XXI century in both quantitative and qualitative terms. In this article, the concept of public space includes open spaces such as parks, public squares and walking areas. To make this analysis, we take Mexico City as the case study. It has a population of nearly 9 million inhabitants and is composed of sixteen boroughs. For this analysis, we consider both existing public spaces and the government intervention for building and improving new and existent public spaces. Results show that on the one hand, quantitatively there is not an equitable distribution of public spaces due to both the growth of the city itself as well as due to the absence of political will to create public spaces. Another factor is the evolution of this city, which has been growing merely in a “patched pattern”, where public space has played no role at all with a total absence of urban design. On the other hand, qualitatively, even the boroughs with the most public spaces have not shown interest in making these spaces qualitatively inclusive and open to the general population aiming for integration. Therefore, urban projects that privatize public space seem to be the rule, rather than a rehabilitation effort of the existent public spaces. Hence, state intervention should reinforce its role as an agent of social change acting in benefit of the majority of the inhabitants with the promotion of more inclusive public spaces.

Studies on Lucrative Design of Waste Heat Recovery System for Air Conditioners

In this paper comprehensive studies have been carried out for the design optimization of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Numerical studies have been carried for the geometry optimization of a waste heat recovery system for domestic air conditioners. Numerical computations have been carried out using a validated 2d pressure based, unsteady, 2nd-order implicit, SST k-ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. At identical inflow and boundary conditions various geometries were tried and effort has been taken for proposing the best design criteria. Several combinations of pipe line shapes viz., straight and spiral with different number of coils for the radiator have been attempted and accordingly the design criteria has been proposed for the waste heat recovery system design. We have concluded that, within the given envelope, the geometry optimization is a meaningful objective for getting better performance of waste heat recovery system for air conditioners.

On the Optimality Assessment of Nanoparticle Size Spectrometry and Its Association to the Entropy Concept

Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nanoparticles under the influence of electric field in Electrical Mobility Spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined fielddiffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multichannel EMS. The result, a cloud of particles with no uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using Computational Fluid Dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.

Gimbal Structure for the Design of 3D Flywheel System

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash

Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level in many of the distilleries in India, but are not properly working due to fouling problem which is caused by the presence of high concentration of organic matter and other contaminants in biologically treated spentwash. In order to make the membrane treatment a proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) for pretreatment of RO at tertiary stage has been performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15-43°C) were used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS was 62%, 93.5% and 75.5% respectively, with UF, at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.

Effects of Synchronous Music on Gymnastics' Motor Skills Performance among Undergraduate Female Students in Physical Education College

The present study aimed to investigate the effect of synchronous music in Gymnastics' motor skill performance among undergraduate female students in physical education college at Basra University. The researcher used experimental design. 20 female students of physical education divided equally into two groups, (10) experimental group with music, (10) control group without music. All participants complete 6 weeks in testing. Data analysis based on T-test shows significant difference at (α = 0.05) in all skills level between experimental and control groups in favor of experimental group. Results of this study contribute to developing the role of synchronous music in improving gymnastic skills performance.

Controller Design for Active Suspension System of ¼ Car with Unknown Mass and Time-Delay

The purpose of this paper is to present a modeling and control of a quarter-car active suspension system with unknown mass, unknown time-delay and road disturbance. The objective of designing the controller is to derive a control law to achieve stability of the system and convergence that can considerably improve ride comfort and road disturbance handling. This is accomplished by using Routh-Hurwitz criterion based on defined parameters. Mathematical proof is given to show the ability of the designed controller to ensure the target of design, implementation with the active suspension system and enhancement dispersion oscillation of the system despite these problems. Simulations were also performed to control quarter car suspension, where the results obtained from these simulations verify the validity of the proposed design.