Response of Chickpea Genotypes to Drought

Water is the main component of biological processes. Water management is important to obtain higher productivity. In this study, some of the yield components were investigated together with different drought levels. Four chickpea genotypes (CDC Frontier, CDC Luna, Sawyer and Sierra) were grown in pots with 3 different irrigation levels (a dose of 17.5 ml, 35 ml and 70 ml for each pot per day) after three weeks from sowing. In the research, flowering, pod set, pod per plant, fertile pod, double seed/pod, stem diameter, plant weight, seed per plant, 1000 seed weight, seed diameter, vegetation length and weekly plant height were measured. Consequently, significant differences were observed on all the investigated characteristics owing to genotypes (except double seed/pod and stem diameter), water levels (except first pod, seed weight and height on 3rd week) and genotype x water level interaction (except first pod, double seed/pod, seed weight and height).

Development a New Model of EEVC/WG17 Lower Legform for Pedestrian Safety

Development, calibration and validation of a threedimensional model of the Legform impactor for pedestrian crash with bumper are presented. Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. In order to prevent lower extremity injuries to a pedestrian when struck by a car, it is important to elucidate the loadings from car front structures on the lower extremities and the injury mechanism caused by these loadings. An impact test procedure with a legform addressing lower limb injuries in car pedestrian accidents has been proposed by EEVC/WG17. In this study a modified legform impactor is introduced and validated against EEVC/WG17 criteria. The finite element model of this legform is developed using LS-DYNA software. Total mass of legform impactor is 13.4 kg.Technical specifications including the mass and location of the center of gravity and moment of inertia about a horizontal axis through the respective centre of gravity in femur and tibia are determined. The obtained results of legform impactor static and dynamic tests are as specified in the EEVC/WG17.

A Research about How the Dividend Policy Influences the Enterprise Value on the Condition of Consecutive Cash Payoff

this article conducts a research about the relationship between cash dividend policy and enterprise value based on the data coming from the A-share listed companies over period 2005-2009. In conclusion, the enterprise value has a negative correlation with the incremental and the degressive cash dividend per share, and has a positive correlation with the stable cash dividend per share.

Prestressed Concrete Girder Bridges Using Large 0.7 Inch Strands

The National Bridge Inventory (NBI) includes more than 600,000 bridges within the United States of America. Prestressed concrete girder bridges represent one of the most widely used bridge systems. The majority of these girder bridges were constructed using 0.5 and 0.6 inch diameter strands. The main impediments to using larger strand diameters are: 1) lack of prestress bed capacities, 2) lack of structural knowledge regarding the transfer and development length of larger strands, and 3) the possibility of developing wider end zone cracks upon strand release. This paper presents a study about using 0.7 inch strands in girder fabrication. Transfer and development length were evaluated, and girders were fabricated using 0.7 inch strands at different spacings. Results showed that 0.7 inch strands can be used at 2.0 inch spacing without violating the AASHTO LRFD Specifications, while attaining superior performance in shear and flexure.

3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

Traffic Violation Detection System based on RFID

Road Traffic Accidents are a major cause of disability and death throughout the world. The control of intelligent vehicles in order to reduce human error and boost ease congestion is not accomplished solely by the aid of human resources. The present article is an attempt to introduce an intelligent control system based on RFID technology. By the help of RFID technology, vehicles are connected to computerized systems, intelligent light poles and other available hardware along the way. In this project, intelligent control system is capable of tracking all vehicles, crisis management and control, traffic guidance and recording Driving offences along the highway.

Mechanical-Physical Characteristics Affecting the Durability of Fibre Reinforced Concrete with Recycled Aggregate

The article presents findings from the study and analysis of the results of an experimental programme focused on the production of concrete and fibre reinforced concrete in which natural aggregate has been substituted with brick or concrete recyclate. The research results are analyzed to monitor the effect of mechanicalphysical characteristics on the durability properties of tested cementitious composites. The key parts of the fibre reinforced concrete mix are the basic components: aggregates – recyclate, cement, fly ash, water and fibres. Their specific ratios and the properties of individual components principally affect the resulting behaviour of fresh fibre reinforced concrete and the characteristics of the final product. The article builds on the sources dealing with the use of recycled aggregates from construction and demolition waste in the production of fibre reinforced concrete. The implemented procedure of testing the composite contributes to the building sustainability in environmental engineering.

A Middleware Transparent Framework for Applying MDA to SOA

Although Model Driven Architecture has taken successful steps toward model-based software development, this approach still faces complex situations and ambiguous questions while applying to real world software systems. One of these questions - which has taken the most interest and focus - is how model transforms between different abstraction levels, MDA proposes. In this paper, we propose an approach based on Story Driven Modeling and Aspect Oriented Programming to ease these transformations. Service Oriented Architecture is taken as the target model to test the proposed mechanism in a functional system. Service Oriented Architecture and Model Driven Architecture [1] are both considered as the frontiers of their own domain in the software world. Following components - which was the greatest step after object oriented - SOA is introduced, focusing on more integrated and automated software solutions. On the other hand - and from the designers' point of view - MDA is just initiating another evolution. MDA is considered as the next big step after UML in designing domain.

Feasibility of Leukemia Cancer Treatment (K562) by Atmospheric Pressure Plasma Jet

A new and novel approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper a pin-to-hole plasma jet suitable for biological applications is investigated and characterized and the possibility and feasibility of cancer cell treatment is evaluated. The characterization includes power consumption via Lissajous method, thermal behavior of plasma using Infra-red camera as a novel method, Optical Emission Spectroscopy (OES) to determine the species that are generated. Treatment of leukemia cancer cells is also implemented and MTT assay is used to evaluate viability.

An Efficient Approach for Optimal Placement of TCSC in Double Auction Power Market

This paper proposes an investment cost recovery based efficient and fast sequential optimization approach to optimal allocation of thyristor controlled series compensator (TCSC) in competitive power market. The optimization technique has been used with an objective to maximizing the social welfare and minimizing the device installation cost by suitable location and rating of TCSC in the system. The effectiveness of proposed approach for location of TCSC has been compared with some existing methods of TCSC placement, in terms of its impact on social welfare, TCSC investment recovery and optimal generation as well as load patterns. The results have been obtained on modified IEEE 14-bus system.

Authentication in Multi-Hop Wireless Mesh Networks

Wireless Mesh Networks (WMNs) are an emerging technology for last-mile broadband access. In WMNs, similar to ad hoc networks, each user node operates not only as a host but also as a router. User packets are forwarded to and from an Internet-connected gateway in multi-hop fashion. The WMNs can be integrated with other networking technologies i.e. ad hoc networks, to implement a smooth network extension. The meshed topology provides good reliability and scalability, as well as low upfront investments. Despite the recent start-up surge in WMNs, much research remains to be done in standardizing the functional parameters of WMNs to fully exploit their full potential. An edifice of the security concerns of these networks is authentication of a new client joining an integrated ad hoc network and such a scenario will require execution of a multihop authentication technique. Our endeavor in this paper is to introduce a secure authentication technique, with light over-heads that can be conveniently implemented for the ad-hoc nodes forming clients of an integrated WMN, thus facilitating their inter-operability.

Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM

It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.

Real Time Speed Estimation of Vehicles

this paper gives a novel approach towards real-time speed estimation of multiple traffic vehicles using fuzzy logic and image processing techniques with proper arrangement of camera parameters. The described algorithm consists of several important steps. First, the background is estimated by computing median over time window of specific frames. Second, the foreground is extracted using fuzzy similarity approach (FSA) between estimated background pixels and the current frame pixels containing foreground and background. Third, the traffic lanes are divided into two parts for both direction vehicles for parallel processing. Finally, the speeds of vehicles are estimated by Maximum a Posterior Probability (MAP) estimator. True ground speed is determined by utilizing infrared sensors for three different vehicles and the results are compared to the proposed algorithm with an accuracy of ± 0.74 kmph.

A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection

Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.

Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines

The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.

Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach

Multi-energy systems will enhance the system reliability and power quality. This paper presents an integrated approach for the design and operation of distributed energy resources (DER) systems, based on energy hub modeling. A multi-objective optimization model is developed by considering an integrated view of electricity and natural gas network to analyze the optimal design and operating condition of DER systems, by considering two conflicting objectives, namely, minimization of total cost and the minimization of environmental impact which is assessed in terms of CO2 emissions. The mathematical model considers energy demands of the site, local climate data, and utility tariff structure, as well as technical and financial characteristics of the candidate DER technologies. To provide energy demands, energy systems including photovoltaic, and co-generation systems, boiler, central power grid are considered. As an illustrative example, a hotel in Iran demonstrates potential applications of the proposed method. The results prove that increasing the satisfaction degree of environmental objective leads to increased total cost.

Conditions on Blind Source Separability of Linear FIR-MIMO Systems with Binary Inputs

In this note, we investigate the blind source separability of linear FIR-MIMO systems. The concept of semi-reversibility of a system is presented. It is shown that for a semi-reversible system, if the input signals belong to a binary alphabet, then the source data can be blindly separated. One sufficient condition for a system to be semi-reversible is obtained. It is also shown that the proposed criteria is weaker than that in the literature which requires that the channel matrix is irreducible/invertible or reversible.

Robust Minutiae Watermarking in Wavelet Domain for Fingerprint Security

In this manuscript, a wavelet-based blind watermarking scheme has been proposed as a means to provide security to authenticity of a fingerprint. The information used for identification or verification of a fingerprint mainly lies in its minutiae. By robust watermarking of the minutiae in the fingerprint image itself, the useful information can be extracted accurately even if the fingerprint is severely degraded. The minutiae are converted in a binary watermark and embedding these watermarks in the detail regions increases the robustness of watermarking, at little to no additional impact on image quality. It has been experimentally shown that when the minutiae is embedded into wavelet detail coefficients of a fingerprint image in spread spectrum fashion using a pseudorandom sequence, the robustness is observed to have a proportional response while perceptual invisibility has an inversely proportional response to amplification factor “K". The DWT-based technique has been found to be very robust against noises, geometrical distortions filtering and JPEG compression attacks and is also found to give remarkably better performance than DCT-based technique in terms of correlation coefficient and number of erroneous minutiae.

Protecting the Privacy and Trust of VIP Users on Social Network Sites

There is a real threat on the VIPs personal pages on the Social Network Sites (SNS). The real threats to these pages is violation of privacy and theft of identity through creating fake pages that exploit their names and pictures to attract the victims and spread of lies. In this paper, we propose a new secure architecture that improves the trusting and finds an effective solution to reduce fake pages and possibility of recognizing VIP pages on SNS. The proposed architecture works as a third party that is added to Facebook to provide the trust service to personal pages for VIPs. Through this mechanism, it works to ensure the real identity of the applicant through the electronic authentication of personal information by storing this information within content of their website. As a result, the significance of the proposed architecture is that it secures and provides trust to the VIPs personal pages. Furthermore, it can help to discover fake page, protect the privacy, reduce crimes of personality-theft, and increase the sense of trust and satisfaction by friends and admirers in interacting with SNS.

Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design

Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.