Solar Radiation Time Series Prediction

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Teaching Ethical Behaviour: Conversational Analysis in Perspective

In the past researchers have questioned the effectiveness of ethics training in higher education. Also, there are observations that support the view that ethical behaviour (range of actions)/ethical decision making models used in the past make use of vignettes to explain ethical behaviour. The understanding remains in the perspective that these vignettes play a limited role in determining individual intentions and not actions. Some authors have also agreed that there are possibilities of differences in one’s intentions and actions. This paper makes an attempt to fill those gaps by evaluating real actions rather than intentions. In a way this study suggests the use of an experiential methodology to explore Berlo’s model of communication as an action along with orchestration of various principles. To this endeavor, an attempt was made to use conversational analysis in the pursuance of evaluating ethical decision making behaviour among students and middle level managers. The process was repeated six times with the set of an average of 15 participants. Similarities have been observed in the behaviour of students and middle level managers that calls for understanding that both the groups of individuals have no cognizance of their actual actions. The deliberations derived out of conversation were taken a step forward for meta-ethical evaluations to portray a clear picture of ethical behaviour among participants. This study provides insights for understanding demonstrated unconscious human behaviour which may fortuitously be termed both ethical and unethical.

Analyzing the Perceived Relationship between Motivation and Satisfaction for Rural Tourists in a Digital World

Rural tourism is usually associated with rural development because it has strong linkages to rural resources; but it remains underdeveloped compared to urban tourism. This underdevelopment of rural tourism serves as a motivation for this study whose aim is to examine the factors affecting the perceived satisfaction of rural tourists. The objectives of this study are: to identify and design theories and models on rural tourism satisfaction, and to empirically validate these models and theories through a survey of tourists from the Malealea Lodge which is located in the Mafeteng District, in the Mountain Kingdom of Lesotho. Data generated by the collection of questionnaires used by this survey was analyzed quantitatively using descriptive statistics and correlations in SPSS after checking the validity and the reliability of the questionnaire. The main hypothesis behind this study is the relationship between the demographics of rural tourists, their motivation, and their satisfaction, as supported by existing literature; except that motivation is measured in this study according to three dimensions: push factors, pull factors, and perceived usefulness of ICTs in the rural tourism experience. Findings from this study indicate that among the demographics factors, continent of origin and marital status influence the satisfaction of rural tourists; and their occupation affects their perceptions on the use of ICTs in rural tourism. Moreover, only pull factors were found to influence the satisfaction of rural tourists.

Stature Prediction Model Based On Hand Anthropometry

The arm length, hand length, hand breadth and middle finger length of 1540 right-handed industrial workers of Haryana state was used to assess the relationship between the upper limb dimensions and stature. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then simple and multiple linear regression models were used to estimate stature using SPSS (version 17). There was a positive correlation between upper limb measurements (hand length, hand breadth, arm length and middle finger length) and stature (p < 0.01), which was highest for hand length. The accuracy of stature prediction ranged from ± 54.897 mm to ± 58.307 mm. The use of multiple regression equations gave better results than simple regression equations. This study provides new forensic standards for stature estimation from the upper limb measurements of male industrial workers of Haryana (India). The results of this research indicate that stature can be determined using hand dimensions with accuracy, when only upper limb is available due to any reasons likewise explosions, train/plane crashes, mutilated bodies, etc. The regression formula derived in this study will be useful for anatomists, archaeologists, anthropologists, design engineers and forensic scientists for fairly prediction of stature using regression equations.

The Use of Social Networking Sites in eLearning

The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper commences its contribution by analyzing the various models and theories proposed in literature and amalgamate together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.

Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile

Flash Floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.

Distributed Manufacturing (DM) - Smart Units and Collaborative Processes

Applications of the Hausdorff space and its mappings into tangent spaces are outlined, including their fractal dimensions and self-similarities. The paper details this theory set up and further describes virtualizations and atomization of manufacturing processes. It demonstrates novel concurrency principles that will guide manufacturing processes and resources configurations. Moreover, varying levels of details may be produced by up folding and breaking down of newly introduced generic models. This choice of layered generic models for units and systems aspects along specific aspects allows research work in parallel to other disciplines with the same focus on all levels of detail. More credit and easier access are granted to outside disciplines for enriching manufacturing grounds. Specific mappings and the layers give hints for chances for interdisciplinary outcomes and may highlight more details for interoperability standards, as already worked on the international level. The new rules are described, which require additional properties concerning all involved entities for defining distributed decision cycles, again on the base of self-similarity. All properties are further detailed and assigned to a maturity scale, eventually displaying the smartness maturity of a total shopfloor or a factory. The paper contributes to the intensive ongoing discussion in the field of intelligent distributed manufacturing and promotes solid concepts for implementations of Cyber Physical Systems and the Internet of Things into manufacturing industry, like industry 4.0, as discussed in German-speaking countries.

Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

In this paper we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electromechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present backstepping design based on the Euler approximate discretetime model of a continuous-time plant. Theoretical considerations are verified by numerical simulation.

CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement

This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable range of multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.

Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

An innovative concept called “Flexy-Energy” is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energy sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel Diesel generators and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel Diesel generators. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand.This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Pressure Losses on Realistic Geometry of Tracheobronchial Tree

Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculation of pressure losses in the real lungs is time consuming and inefficient process due to its complexity and diversity. For these calculations is necessary to slightly simplify the geometry of lungs (same cross-section over the length of individual generation) or use one of the idealized models of lungs (Horsfield, Weibel). The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli and continuity equations. The aim of the article is to analyse the accuracy of the analytical method and its possibility of use for the calculation of pressure losses in lower generations, which is difficult to solve by numerical method due to the small geometry.

Atmospheric Fluid Bed Gasification of Different Biomass Fuels

This paper shortly describes various types of biomass and a growing number of facilities utilizing the biomass in the Czech Republic. The considerable part of this paper deals with energy parameters of the most frequently used types of biomass and results of their gasification testing. Sixteen most used "Czech" woody plants and grasses were selected; raw, element and biochemical analyses were performed and basic calorimetric values, ash composition, and ash characteristic temperatures were identified. Later, each biofuel was tested in a fluidized bed gasifier. The essential part of this paper provides results of the gasification of selected biomass types. Operating conditions are described in detail with a focus on individual fuels properties. Gas composition and impurities content are also identified. In terms of operating conditions and gas quality, the essential difference occurred mainly between woody plants and grasses. The woody plants were evaluated as more suitable fuels for fluidized bed gasifiers. Testing results significantly help with a decision-making process regarding suitability of energy plants for growing and with a selection of optimal biomass-treatment technology.

Soil Quality State and Trends in New Zealand’s Largest City after 15 Years

Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009- 2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6 and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.

Assessing Basic Computer Applications’ Skills of College-Level Students in Saudi Arabia

This paper is a report on the findings of a study conducted at the Institute of Public Administration (IPA) in Saudi Arabia. The paper applied both qualitative and quantitative approaches to assess the levels of basic computer applications’ skills among students enrolled in the preparatory programs of the institution. Qualitative data have been collected from semi-structured interviews with the instructors who have previously been assigned to teach Introduction to information technology courses. Quantitative data were collected by executing a self-report questionnaire and a written statistical test. Three hundred eighty enrolled students responded to the questionnaire and one hundred forty two accomplished the statistical test. The results indicate the lack of necessary skills to deal with computer applications among most of the students who are enrolled in the IPA’s preparatory programs.

Optimization of Strategies and Models Review for Optimal Technologies - Based On Fuzzy Schemes for Green Architecture

Recently, the green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives in green buildings should be designed to minimize the overall impact of the built environment that effect on ecosystems in general and in particularly human health and natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state- ofart- review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Collaborative Team Work in Higher Education: A Case Study

If teamwork is the key to organizational learning, productivity and growth, then, why do some teams succeed in achieving these, while others falter at different stages? Building teams in higher education institutions has been a challenge and an open-ended constructivist approach was considered on an experimental basis for this study to address this challenge. For this research, teams of students from the MBA program were chosen to study the effect of teamwork in learning, the motivation levels among student team members, and the effect of collaboration in achieving team goals. The teams were built on shared vision and goals, cohesion was ensured, positive induction in the form of faculty mentoring was provided for each participating team and the results have been presented with conclusions and suggestions.

Material Parameter Identification of Modified AbdelKarim-Ohno Model

The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.

Security over OFDM Fading Channels with Friendly Jammer

In this paper, we investigate the effect of friendly jamming power allocation strategies on the achievable average secrecy rate over a bank of parallel fading wiretap channels. We investigate the achievable average secrecy rate in parallel fading wiretap channels subject to Rayleigh and Rician fading. The achievable average secrecy rate, due to the presence of a line-of-sight component in the jammer channel is also evaluated. Moreover, we study the detrimental effect of correlation across the parallel sub-channels, and evaluate the corresponding decrease in the achievable average secrecy rate for the various fading configurations. We also investigate the tradeoff between the transmission power and the jamming power for a fixed total power budget. Our results, which are applicable to current orthogonal frequency division multiplexing (OFDM) communications systems, shed further light on the achievable average secrecy rates over a bank of parallel fading channels in the presence of friendly jammers.

Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot

In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.