Performance of an Electrocoagulation Process in Treating Direct Dye: Batch and Continuous Upflow Processes

This study presents an investigation of electrochemical variables and an application of the optimal parameters in operating a continuous upflow electrocoagulation reactor in removing dye. Direct red 23, which is azo-based, was used as a representative of direct dyes. First, a batch mode was employed to optimize the design parameters: electrode type, electrode distance, current density and electrocoagulation time. The optimal parameters were found to be iron anode, distance between electrodes of 8 mm and current density of 30 A·m-2 with contact time of 5 min. The performance of the continuous upflow reactor with these parameters was satisfactory, with >95% color removal and energy consumption in the order of 0.6-0.7 kWh·m-3.

A Search Algorithm for Solving the Economic Lot Scheduling Problem with Reworks under the Basic Period Approach

In this study, we are interested in the economic lot scheduling problem (ELSP) that considers manufacturing of the serviceable products and remanufacturing of the reworked products. In this paper, we formulate a mathematical model for the ELSP with reworks using the basic period approach. In order to solve this problem, we propose a search algorithm to find the cyclic multiplier ki of each product that can be cyclically produced for every ki basic periods. This research also uses two heuristics to search for the optimal production sequence of all lots and the optimal time length of the basic period so as to minimize the average total cost. This research uses a numerical example to show the effectiveness of our approach.

Development of Predictive Model for Surface Roughness in End Milling of Al-SiCp Metal Matrix Composites using Fuzzy Logic

Metal matrix composites have been increasingly used as materials for components in automotive and aerospace industries because of their improved properties compared with non-reinforced alloys. During machining the selection of appropriate machining parameters to produce job for desired surface roughness is of great concern considering the economy of manufacturing process. In this study, a surface roughness prediction model using fuzzy logic is developed for end milling of Al-SiCp metal matrix composite component using carbide end mill cutter. The surface roughness is modeled as a function of spindle speed (N), feed rate (f), depth of cut (d) and the SiCp percentage (S). The predicted values surface roughness is compared with experimental result. The model predicts average percentage error as 4.56% and mean square error as 0.0729. It is observed that surface roughness is most influenced by feed rate, spindle speed and SiC percentage. Depth of cut has least influence.

Embedded Systems Energy Consumption Analysis Through Co-modelling and Simulation

This paper presents a new methodology to study power and energy consumption in mechatronic systems early in the development process. This new approach makes use of two modeling languages to represent and simulate embedded control software and electromechanical subsystems in the discrete event and continuous time domain respectively within a single co-model. This co-model enables an accurate representation of power and energy consumption and facilitates the analysis and development of both software and electro-mechanical subsystems in parallel. This makes the engineers aware of energy-wise implications of different design alternatives and enables early trade-off analysis from the beginning of the analysis and design activities.

Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil

The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.

Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function  approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

The Effect of the National Culture on the International Business

The aim for this research is to deliberately discuss how and why the contexts of culture are the main significant factors which need to be considered when conducting the international business oversea. As a consequence of understanding these various factors, the researcher would be able to infer some suggestions to the international organizations. With this in mind, the results of the understanding in a national culture environment can support the organizations to settle its international strategies which may be useful to develop the national export and import effectiveness. This data collecting methods will be concentrated upon 5-10 interviews from the senior members and business officers in the international company in Thailand by e-mail interview and analyses the individual manager’s viewpoint. As well as, focus on the questionnaires which the respondents were selected randomly around 100 samples from UK and Thailand, together with providing a functional sample size and comparable to data. The results of the study question the role of national culture, which contributed to in international business effectiveness and emphasize the positive and negative aspects, as well as suggestions to business investors are informed.

Location Based Clustering in Wireless Sensor Networks

Due to the limited energy resources, energy efficient operation of sensor node is a key issue in wireless sensor networks. Clustering is an effective method to prolong the lifetime of energy constrained wireless sensor network. However, clustering in wireless sensor network faces several challenges such as selection of an optimal group of sensor nodes as cluster, optimum selection of cluster head, energy balanced optimal strategy for rotating the role of cluster head in a cluster, maintaining intra and inter cluster connectivity and optimal data routing in the network. In this paper, we propose a protocol supporting an energy efficient clustering, cluster head selection/rotation and data routing method to prolong the lifetime of sensor network. Simulation results demonstrate that the proposed protocol prolongs network lifetime due to the use of efficient clustering, cluster head selection/rotation and data routing.

An Efficient and Secure Solution for the Problems of ARP Cache Poisoning Attacks

The Address Resolution Protocol (ARP) is used by computers to map logical addresses (IP) to physical addresses (MAC). However ARP is an all trusting protocol and is stateless which makes it vulnerable to many ARP cache poisoning attacks such as Man-in-the-Middle (MITM) and Denial of service (DoS) attacks. These flaws result in security breaches thus weakening the appeal of the computer for exchange of sensitive data. In this paper we describe ARP, outline several possible ARP cache poisoning attacks and give the detailed of some attack scenarios in network having both wired and wireless hosts. We have analyzed each of proposed solutions, identify their strengths and limitations. Finally get that no solution offers a feasible solution. Hence, this paper presents an efficient and secure version of ARP that is able to cope up with all these types of attacks and is also a feasible solution. It is a stateful protocol, by storing the information of the Request frame in the ARP cache, to reduce the chances of various types of attacks in ARP. It is more efficient and secure by broadcasting ARP Reply frame in the network and storing related entries in the ARP cache each time when communication take place.

Parametric Primitives for Hand Gesture Recognition

Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding an action when there is uncertainty. Ambiguities arising in similar actions can be resolved with objectn context. We classify actions according to the changes they make to the object space. Actions that produce the same state change in the object movement space are classified to belong to the same class. This allow us to define several classes of actions where members of each class are connected with a semantic interpretation.

Biochemical and Multiplex PCR Analysis of Toxic Crystal Proteins to Determine Genes in Bacillus thuringiensis Mutants

The Egyptian Bacillus thuringiensis isolate (M5) produce crystal proteins that is toxic against insects was irradiated with UV light to induce mutants. Upon testing 10 of the resulting mutants for their toxicity against cotton leafworm larvae, the three mutants 62, 64 and 85 proved to be the most toxic ones. Upon testing these mutants along with their parental isolate by SDS-PAGE analysis of spores-crystals proteins as well as vegetative cells proteins, new induced bands appeared in the three mutants by UV radiation and also they showed disappearance of some other bands as compared with the wild type isolate. Multiplex PCR technique, with five sets of specific primers, was used to detect the three types of cryI genes cryIAa, cryIAb and cryIAc. Results showed that these three genes exist, as distinctive bands, in the wild type isolate (M5) as well as in mutants 62 and 85, while the mutant 64 had two distinctive bands of cryIAb and cryIAc genes, and a faint band of cryI Aa gene. Finally, these results revealed that mutant 62 is considered as the promising mutant since it is UV resistant, highly toxic against Spodoptera littoralis and active against a wide range of Lepidopteran insects.

The Results of the Fetal Weight Estimation of the Infants Delivered in the Delivery Room At Dan Khunthot Hospital by Johnson-s Method

The objective of this study was to determine the accuracy to estimation fetal weight by Johnson-s method and compares it with actual birth weight. The sample group was 126 infants delivered in Dan KhunThot hospital from January March 2012. Fetal weight was estimated by measuring fundal height according to Johnson-s method. The information was collected by studying historical delivery records and then analyzed by using the statistics of frequency, percentage, mean, and standard deviation. Finally, the difference was analyzed by a paired t-test.The results showed had an average birth weight was 3093.57 ± 391.03 g (mean ± SD) and 3,455 ± 454.55 g average estimated fetal weight by Johnson-s method higher than average actual birth weight was 384.09 grams. When classifying the infants according to birth weight found that low birth weight ( 4000 g) actual birth weight was more than estimated fetal weight. The difference was found between actual birth weight and estimation fetal weight of the minimum weight in high birth weight ( > 4000 g) , the appropriate birth weight (2500-3999g) and low birth weight (

A High Accuracy Measurement Circuit for Soil Moisture Detection

The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.

State of the Art: A Study on Fall Detection

Unintentional falls are rife throughout the ages and have been the common factor of serious or critical injuries especially for the elderly society. Fortunately, owing to the recent rapid advancement in technology, fall detection system is made possible, enabling detection of falling events for the elderly, monitoring the patient and consequently provides emergency support in the event of falling. This paper presents a review of 3 main categories of fall detection techniques, ranging from year 2005 to year 2010. This paper will be focusing on discussing the techniques alongside with summary and conclusion for them.

A Study on Local Wisdom towards Career Building of People in Kamchanoad Community

This research gathered local wisdom towards career building of people in Kamchanoad Community, Baan Muang sub-district, Baan Dung district, Udon Thani province. Data was collected through in-depth interviews with village headmen, community board, teachers, monks, Kamchanoad forest managers and revered elderly aged over 60 years old. All of these 30 interviewees have resided in Kamchanoad Community for more than 40. Descriptive data analysis result revealed that the most prominent local wisdom of Kamchanoad community is their beliefs and religion. Most people in the community have strongly maintained local tradition, the festival of appeasing Chao Pu Sri Suttho on the middle of the 6th month of Thai lunar calendar which falls on the same day with Vesak Day. 100 percent of the people in this community are Buddhist. They believe that Naga, an entity or being, taking the form of a serpent, named “Sri Suttho” lives in Kamchanoad forest. The local people worship the serpent and ask for blessings. Another local wisdom of this community is Sinh fabric weaving.

Recycling for Sustainability: Plant Growth Media from Coal Combustion Products, Biosolids and Compost

Generation of electricity from coal has increased over the years in the United States and around the world. Burning of coal results in annual production of upwards of 100 millions tons (United States only) of coal combustion products (CCPs). Only about a third of these products are being used to create new products while the remainder goes to landfills. Application of CCPs mixed with composted organic materials onto soil can improve the soil-s physico-chemical conditions and provide essential plant nutritients. Our objective was to create plant growth media utilizing CCPs and compost in way which maximizes the use of these products and, at the same time, maintain good plant growth. Media were formulated by adding composted organic matter (COM) to CCPs at ratios ranging from 2:8 to 8:2 (v/v). The quality of these media was evaluated by measuring their physical and chemical properties and their effect on plant growth. We tested the media by 1) measuring their physical and chemical properties and 2) the growth of three plant species in the experimental media: wheat (Triticum sativum), tomato (Lycopersicum esculentum) and marigold (Tagetes patula). We achieved significantly (p < 0.001) higher growth (7-130%) in the experimental media containing CCPs compared to a commercial mix. The experimental media supplied adequate plant nutrition as no fertilization was provided during the experiment. Based on the results, we recommend the use of CCPs and composts for the creation of plant growth media.

Technology Readiness Index (TRI) among USM Distance Education Students According to Age

This paper reports the findings of a research conducted to evaluate the ownership and usage of technology devices within Distance Education students- according to their age. This research involved 45 Distance Education students from USM Universiti Sains Malaysia (DEUSM) as its respondents. Data was collected through questionnaire that had been developed by the researchers based on some literature review. The data was analyzed to find out the frequencies of respondents agreements towards ownership of technology devices and the use of technology devices. The findings shows that all respondents own mobile phone and majority of them reveal that they use mobile on regular basis. The student in the age 30-39 has the heist ownership of the technology devices.

Studying on ARINC653 Partition Run-time Scheduling and Simulation

Avionics software is safe-critical embedded software and its architecture is evolving from traditional federated architectures to Integrated Modular Avionics (IMA) to improve resource usability. ARINC 653 (Avionics Application Standard Software Interface) is a software specification for space and time partitioning in Safety-critical avionics Real-time operating systems. Arinc653 uses two-level scheduling strategies, but current modeling tools only apply to simple problems of Arinc653 two-level scheduling, which only contain time property. In avionics industry, we are always manually allocating tasks and calculating the timing table of a real-time system to ensure it-s running as we design. In this paper we represent an automatically generating strategy which applies to the two scheduling problems with dependent constraints in Arinc653 partition run-time environment. It provides the functionality of automatic generation from the task and partition models to scheduling policy through allocating the tasks to the partitions while following the constraints, and then we design a simulating mechanism to check whether our policy is schedulable or not