Questions in the School

Paper deals with the topic of questions as important components of information behavior in the school. By analyzing the Corpus Schola2010, the state of contemporary education in terms of questioning is proven unsatisfactory: 80% of the questions are asked by teachers; most of teacher-s questions are asked at the beginning of the first grade, than their number decreases and is settling down on 80±10 questions per lesson. The average number of questions within one lesson per one pupil is generally less than one whole question. The highest values are achieved in the first, sixth, eighth and tenth grade,, i.e. in the transition years in which pupils are moving into higher levels of education and every following year it declines. We can state Czech school do not support questioning and question skill of their pupils, thereby typical Czech schools are neglecting the development of thinking, reasoning and cooperation of their pupils.

Groundwater Level Prediction at a Pilot Area in Southeastern Part of the UAE using Shallow Seismic Method

The groundwater is one of the main sources for sustainability in the United Arab Emirates (UAE). Intensive developments in Al-Ain area lead to increase water demand, which consequently reduced the overall groundwater quantity in major aquifers. However, in certain residential areas within Al-Ain, it has been noticed that the groundwater level is rising, for example in Sha-ab Al Askher area. The reasons for the groundwater rising phenomenon are yet to be investigated. In this work, twenty four seismic refraction profiles have been carried out along the study pilot area; as well as field measurement of the groundwater level in a number of available water wells in the area. The processed seismic data indicated the deepest and shallowest groundwater levels are 15m and 2.3 meters respectively. This result is greatly consistent with the proper field measurement of the groundwater level. The minimum detected value may be referred to perched subsurface water which may be associated to the infiltration from the surrounding water bodies such as lakes, and elevated farms. The maximum values indicate the accurate groundwater level within the study area. The findings of this work may be considered as a preliminary help to the decision makers.

Unified, Low-Cost Analysis Framework for the Cycling Situation in Cities

We propose a low-cost uniform analysis framework allowing comparison of the strengths and weaknesses of the bicycling experience within and between cities. A primary component is an expedient, one-page mobility survey from which mode share is calculated. The bicycle mode share of many cities remains unknown, creating a serious barrier for both scientists and policy makers aiming to understand and increase rates of bicycling. Because of its low cost and expedience, this framework could be replicated widely, uniformly filling the data gap. The framework has been applied to 13 Central European cities with success. Data is collected on multiple modes with specific questions regarding both behavior and quality of travel experience. Individual preferences are also collected, examining the conditions under which respondents would change behavior to adopt more sustainable modes (bicycling or public transportation). A broad analysis opportunity results, intended to inform policy choices.

Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks

Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.

Database Compression for Intelligent On-board Vehicle Controllers

The vehicle fleet of public transportation companies is often equipped with intelligent on-board passenger information systems. A frequently used but time and labor-intensive way for keeping the on-board controllers up-to-date is the manual update using different memory cards (e.g. flash cards) or portable computers. This paper describes a compression algorithm that enables data transmission using low bandwidth wireless radio networks (e.g. GPRS) by minimizing the amount of data traffic. In typical cases it reaches a compression rate of an order of magnitude better than that of the general purpose compressors. Compressed data can be easily expanded by the low-performance controllers, too.

Typological Study of Traditional Mosque Ornamentation in Malaysia – Prospect of Traditional Ornament in Urban Mosque

Since the admission of Islam onto the Malay World in 16th century, the Malay culture began to grow in line with the teachings of Islam as a guide of life. Mosque become a symbol of Muslim communities, as well as the cultural values that have been adapted represent the maturity and readiness of Malay Muslim in manifest a lifestyle tradition into the community. Refinement of ornament that used to take from Hindu-Buddhist beliefs before were adopted and refined to the Islamic values based on the teachings of al-Quran and as-Sunnah delivered a certain message to convey a meaning to the observer. The main purpose of this paper is to analyze the typology and classification of ornaments in Malaysia-s traditional mosque as a channel to the community towards understanding of the identity and also the framework of design thinking in ornaments particularly to the urban mosques in Malaysia.

Embedded Systems Energy Consumption Analysis Through Co-modelling and Simulation

This paper presents a new methodology to study power and energy consumption in mechatronic systems early in the development process. This new approach makes use of two modeling languages to represent and simulate embedded control software and electromechanical subsystems in the discrete event and continuous time domain respectively within a single co-model. This co-model enables an accurate representation of power and energy consumption and facilitates the analysis and development of both software and electro-mechanical subsystems in parallel. This makes the engineers aware of energy-wise implications of different design alternatives and enables early trade-off analysis from the beginning of the analysis and design activities.

Removal of Heavy Metals from Wastewater by Adsorption and Membrane Processes: a Comparative Study

This research aimed at investigating the Cr (III), Cd (II) and Pb (II) removal efficiencies by using the newly synthesized metal oxides/ polyethersulfone (PES), Al2O3/PES and ZrO2/PES, membranes from synthetic wastewater and exploring fouling mechanisms. A Comparative study between the removal efficiencies of Cr (III), Cd (II) and Pb (II) from synthetic and natural wastewater by using adsorption onto agricultural by products and the newly synthesized Al2O3/PES and ZrO2/PES membranes was conducted to assess the advantages and limitations of using the metal oxides/PES membranes for heavy metals removal. The results showed that about 99 % and 88 % removal efficiencies were achieved by the tested membranes for Pb (II) and Cr (III), respectively.

Using Mixtures of Waste Frying Oil and Pork Lard to Produce Biodiesel

Studying alternative raw materials for biodiesel production is of major importance. The use of mixtures with incorporation of wastes is an environmental friendly alternative and might reduce biodiesel production costs. The objective of the present work was: (i) to study biodiesel production using waste frying oil mixed with pork lard and (ii) to understand how mixture composition influences biodiesel quality. Biodiesel was produced by transesterification and quality was evaluated through determination of several parameters according to EN 14214. The weight fraction of lard in the mixture varied from 0 to 1 in 0.2 intervals. Biodiesel production yields varied from 81.7 to 88.0 (wt%), the lowest yields being the ones obtained using waste frying oil and lard alone as raw materials. The obtained products fulfilled most of the determined quality specifications according to European biodiesel quality standard EN 14214. Minimum purity (96.5 wt%) was closely obtained when waste frying oil was used alone and when 0.2% of lard was incorporated in the raw material (96.3 wt%); however, it ranged from 93.9 to 96.3 (wt%) being always close to the limit. From the evaluation of the influence of mixture composition in biodiesel quality, it was possible to establish a model to be used for predicting some parameters of biodiesel resulting from mixtures of waste frying oil with lard when different lard contents are used.

Evaluation of the Possible Effect of Gender, Age and Duration of Diabetes on the Serum Zinc Levels of Diabetic Patients in Murzuk Area-Libya

The aim of this study was to demonstrate the possible effect of some variables such as age, gender, blood sugar level, and duration of diabetes on the serum level of zinc in diabetic individuals from Murzuk area. Serum zinc (Zn), Fasting blood sugar (FBS), hemoglobin HbA1c (HbA1c) were evaluated in 46 type I diabetic subjects (group 1), 48 type II diabetic subjects (group 2) and 43 healthy individuals (control) of both genders aged (30-81) years. Data showed that both diabetic groups have significantly higher (P0.05) differences in serum Zn levels were observed between Males and Females. Serum Zn levels were non-significantly decreased with increasing age. In type II diabetic subjects, serum Zn levels were non-significantly decreased with increasing duration of disease whereas those in type I were non-significantly increased.

Geometric Operators in the Selection of Human Resources

We study the possibility of using geometric operators in the selection of human resources. We develop three new methods that use the ordered weighted geometric (OWG) operator in different indexes used for the selection of human resources. The objective of these models is to manipulate the neutrality of the old methods so the decision maker is able to select human resources according to his particular attitude. In order to develop these models, first a short revision of the OWG operator is developed. Second, we briefly explain the general process for the selection of human resources. Then, we develop the three new indexes. They will use the OWG operator in the Hamming distance, in the adequacy coefficient and in the index of maximum and minimum level. Finally, an illustrative example about the new approach is given.

Determining the Workability of the New Metallurgical Materials

The aim of this paper is to experimentally discover the workability coefficient of the Inconel 718 material by using a slide turning machining. Two different types of cutting inserts, one made of carbide and the other one made of ceramic, are being used. The purpose is to compare measured results and recommend the appropriate materials and cutting parameters for a machining of the Inconel 718. Furthermore, the durability of inserts with the chosen wear criterion is being compared for different cutting speeds. Machinability of these materials is a crucial characteristic as it allows us to shorten the technological cycle time and increase the machining productivity. And this is of great importance from an economic point of view.

A Post Keynesian Environmental Macroeconomic Model for Agricultural Water Sustainability under Climate Change in the Murray-Darling Basin, Australia

Climate change has profound consequences for the agriculture of south-eastern Australia and its climate-induced water shortage in the Murray-Darling Basin. Post Keynesian Economics (PKE) macro-dynamics, along with Kaleckian investment and growth theory, are used to develop an ecological-economic system dynamics model of this complex nonlinear river basin system. The Murray- Darling Basin Simulation Model (MDB-SM) uses the principles of PKE to incorporate the fundamental uncertainty of economic behaviors of farmers regarding the investments they make and the climate change they face, particularly as regards water ecosystem services. MDB-SM provides a framework for macroeconomic policies, especially for long-term fiscal policy and for policy directed at the sustainability of agricultural water, as measured by socio-economic well-being considerations, which include sustainable consumption and investment in the river basin. The model can also reproduce other ecological and economic aspects and, for certain parameters and initial values, exhibit endogenous business cycles and ecological sustainability with realistic characteristics. Most importantly, MDBSM provides a platform for the analysis of alternative economic policy scenarios. These results reveal the importance of understanding water ecosystem adaptation under climate change by integrating a PKE macroeconomic analytical framework with the system dynamics modelling approach. Once parameterised and supplied with historical initial values, MDB-SM should prove to be a practical tool to provide alternative long-term policy simulations of agricultural water and socio-economic well-being.

Order Reduction by Least-Squares Methods about General Point ''a''

The concept of order reduction by least-squares moment matching and generalised least-squares methods has been extended about a general point ?a?, to obtain the reduced order models for linear, time-invariant dynamic systems. Some heuristic criteria have been employed for selecting the linear shift point ?a?, based upon the means (arithmetic, harmonic and geometric) of real parts of the poles of high order system. It is shown that the resultant model depends critically on the choice of linear shift point ?a?. The validity of the criteria is illustrated by solving a numerical example and the results are compared with the other existing techniques.

Infrastructure Planning in Scania a Discourse Analytical Approach to the Concepts of Regional Development and Sustainability in the Planning Process

The paper applies a discourse analytical approach to investigate important concepts influencing the infrastructure planning process in the region of Scania in southern Sweden. Two discourses, one concerning regional development and one concerning sustainability are identified, discussed and contrasted. It is argued that the perceptions of problems and their suggested solutions related to transportation are based on specific ideas, in turn dependent on the importance given to certain concepts, such as regional enlargement, Scania as a transit region, the national environmental quality goals and regional attractiveness. These concepts, their underlying meaning structures and their relevance for the infrastructure planning process are analyzed. The handling of conflicting interests in the planning process, and the possible implications this may have is also discussed. The results indicate that the regional development discourse is dominant and although the solutions to the problems caused by transport are framed in similar ways in the two discourses a harmonization between conflicting goals is proving difficult to achieve.

Seasonal Variations and Different Irrigation Programs on Nutrient Concentrations of 'Starkrimson Delicious' Apple Variety

This study was aimed to determine seasonal variations of leaf nutrient concentrations to define nutrient needs related to growing period and to compare irrigation programs in terms of nutrient uptake. In this study,'Starkrimson Delicious' variety grafted onto seedling rootstock was used during 2009-2010 growing seasons. The study was conducted at E─ƒirdir Fruit Growing Research Station. Leaf samples were taken in five different sample seasons (May, June, July, August and September). Four different pan coefficients (0.50, 0.75, 1.0, 1.25) were applied during drip irrigation treatments in 7 days irrigation interval. Leaf K, Mg, Ca, P, Fe, Zn, Mn and Cu concentrations were determined. The results showed that among the seasonal changes, the highest concentrations of K, Mg, P and Mn in leaves were recorded in May, followed by a decrease in the other months, while in contrast Ca and Fe showed the lowest concentration in May. Results of the study demonstrate that among irrigation programs K and Cu concentration in plants was significantly influenced. Cu concentrations decreased with seasonal variations and different irrigation programs. Thus, nutrient needs of 'Starkrimson Delicious'apple trees at different growth stages should be taken into consideration before making effective fertilization program.

Model based Soft-Sensor for Industrial Crystallization: On-line Mass of Crystals and Solubility Measurement

Monitoring and control of cane sugar crystallization processes depend on the stability of the supersaturation (σ ) state. The most widely used information to represent σ is the electrical conductivity κ of the solutions. Nevertheless, previous studies point out the shortcomings of this approach: κ may be regarded as inappropriate to guarantee an accurate estimation of σ in impure solutions. To improve the process control efficiency, additional information is necessary. The mass of crystals in the solution ( c m ) and the solubility (mass ratio of sugar to water / s w m m ) are relevant to complete information. Indeed, c m inherently contains information about the mass balance and / s w m m contains information about the supersaturation state of the solution. The main problem is that c m and / s w m m are not available on-line. In this paper, a model based soft-sensor is presented for a final crystallization stage (C sugar). Simulation results obtained on industrial data show the reliability of this approach, c m and the crystal content ( cc ) being estimated with a sufficient accuracy for achieving on-line monitoring in industry

Parametric Primitives for Hand Gesture Recognition

Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding an action when there is uncertainty. Ambiguities arising in similar actions can be resolved with objectn context. We classify actions according to the changes they make to the object space. Actions that produce the same state change in the object movement space are classified to belong to the same class. This allow us to define several classes of actions where members of each class are connected with a semantic interpretation.

Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.

Seed Treatment during Germination in Linseed to Overcome Salt and Drought Stresses (Linum usitatissimum L.)

Evaluation of crop plants resistance to environmental stresses specially in germination stage is a critical factor in their selection in different conditions of cultivation. Therefore use of a procedure in controllable situation can help to evaluate plants reaction to stress quickly and precisely. In order to study germination characteristics of flax in water and salinity stress conditions were conducted two laboratories experimental. The two experimental were conducted in 4-replicant completing random design for salinity and water stress. The treatment, for salinity and water stress was three potential (zero, 40, 80 mM) of NaCl and three potential (zero, -2, -4 bar) of PEG respectively. Germination percentage and rate, in addition to Radical and plumule length and dry-weight and plumule/Radical ration were measured. All of characteristics reduce under water stress conditions. salinity stress significant reduce germination rate and Radical and plumule length of flax seeds. Hydropriming and osmopriming significant increased germination rate, plumule length and plumule/Radical ration ration of flax seeds. But germination percentage and Radical and plumule dry weight significant increased only in hydropriming treat. Hydropriming and osmopriming could not be used to improved germination under saline and drought stress. But has more tolerance in salinity and drought stress in flax by less reduce in Radical and plumule length under saline and drought stress.