Component Criticality Importance Measures in Thermal Power Plants Design

This paper presents quantitative component criticality importance indices applicable for identifying and ranking critical components in the phase of thermal power plants design. Identifying critical components for power plant reliability provides one important input to decision-making and guidance throughout the development project. The study of components criticality importance indices to several characteristic structural schemes of conventional thermal power plant is presented and discussed.

The Growth of the Watermelons with Geometric Shapes and Comparing Retention between Cubic and Hexagonal Forms

Shape and form of the watermelon fruits are important factors to save spaces and reducing damage during storing of the fruits. In order to save spaces and prevent fruit damage in watermelon the following experiment was carried out in the farm. The fruits were boxed when they were approximately one cm less than the box diameter. The cubic, hexagonal forms were compared in this research. To do this, different boxes were designed with different holes on the sides to holes the watermelons fruits for shaping. The shapes of the boxes were hexagonal and cubic. The boxes holes sizes were the same with 10mm diameter each. Each side of the boxes had different holes including: without holes to 75 holes. The result showed that the best shape for watermelon storing to save space and prevent fruit damage was hexagonal form. The percentages of the fruit damage were 33 to 80 respectively.

An Analysis of New Service Interchange Designs

An efficient freeway system will be essential to the development of Africa, and interchanges are a key to that efficiency. Around the world, many interchanges between freeways and surface streets, called service interchanges, are of the diamond configuration, and interchanges using roundabouts or loop ramps are also popular. However, many diamond interchanges have serious operational problems, interchanges with roundabouts fail at high demand levels, and loops use lots of expensive land. Newer service interchange designs provide other options. The most popular new interchange design in the US at the moment is the double crossover diamond (DCD), also known as the diverging diamond. The DCD has enormous potential, but also has several significant limitations. The objectives of this paper are to review new service interchange options and to highlight some of the main features of those alternatives. The paper tests four conventional and seven unconventional designs using seven measures related to efficiency, cost, and safety. The results show that there is no superior design in all measures investigated. The DCD is better than most designs tested on most measures examined. However, the DCD was only superior to all other designs for bridge width. The DCD performed relatively poorly for capacity and for serving pedestrians. Based on the results, African freeway designers are encouraged to investigate the full range of alternatives that could work at the spot of interest. Diamonds and DCDs have their niches, but some of the other designs investigated could be optimum at some spots.

The HDH Model for the Development of Creative Structural Thinking and Its Applications to Other Systems

Teaching structures and structural design in architectural studies is considered a difficult mission due to complex reasons and circumstances. This article proposes a new conceptual model (HDH) for teaching structures and structural design in architectural studies. Because of its systems-thinking orientation it is also relevant and applicable to other fields and systems. The HDH model was developed in order to encourage the integration of science and art, especially in relation to structures, in architectural studies.

Resource Efficiency within Current Production

In times of global warming and the increasing shortage of resources, sustainable production is becoming more and more inevitable. Companies cannot only heighten their competitiveness but also contribute positively to environmental protection through efficient energy and resource consumption. Regarding this, technical solutions are often preferred during production, although organizational and process-related approaches also offer great potential. This project focuses on reducing resource usage, with a special emphasis on the human factor. It is the aspiration to develop a methodology that systematically implements and embeds suitable and individual measures and methods regarding resource efficiency throughout the entire production. The measures and methods established help employees handle resources and energy more sensitively. With this in mind, this paper also deals with the difficulties that can occur during the sensitization of employees and the implementation of these measures and methods. In addition, recommendations are given on how to avoid such difficulties.

Sensory Evaluation of Diversified Sweet Potato Drinks among Consumers: Implication for Malnutrition Reduction in Nigeria

Diversification of the processing of crops is a very important way of reducing food insecurity, perishability of most perishable crops and generates verities. Sweet potato has been diversified in various ways by researchers through processing into different forms for consumption. The study considered diversifying the crop into different drinks by combining it with different high nutrient acceptable cereal. There was significant relationship between the educational background of the respondents and level of acceptability of the sweet potato drinks (χ 2 = 1.033 and P = 0.05). Interestingly, significant relationship existed between the most preferred sweet potato drink by the respondents and level of acceptability of the sweet potato drinks (r = 0.394, P = 0.031). The high level of acceptability of the drinks will lead to enhanced production of the crops required for the drinks that would assist in income generation and alleviating food and nutrition insecurity.

Novel NMR-Technology to Assess Food Quality and Safety

High Resolution NMR Spectroscopy offers unique screening capabilities for food quality and safety by combining non-targeted and targeted screening in one analysis. The objective is to demonstrate, that due to its extreme reproducibility NMR can detect smallest changes in concentrations of many components in a mixture, which is best monitored by statistical evaluation however also delivers reliable quantification results. The methodology typically uses a 400 MHz high resolution instrument under full automation after minimized sample preparation. For example one fruit juice analysis in a push button operation takes at maximum 15 minutes and delivers a multitude of results, which are automatically summarized in a PDF report. The method has been proven on fruit juices, where so far unknown frauds could be detected. In addition conventional targeted parameters are obtained in the same analysis. This technology has the advantage that NMR is completely quantitative and concentration calibration only has to be done once for all compounds. Since NMR is so reproducible, it is also transferable between different instruments (with same field strength) and laboratories. Based on strict SOP`s, statistical models developed once can be used on multiple instruments and strategies for compound identification and quantification are applicable as well across labs.

Advances on LuGre Friction Model

LuGre friction model is an ordinary differential equation that is widely used in describing the friction phenomenon for mechanical systems. The importance of this model comes from the fact that it captures most of the friction behavior that has been observed including hysteresis. In this paper, we study some aspects related to the hysteresis behavior induced by the LuGre friction model.

A Study of Current Maintenance Strategies and the Reliability of Critical Medical Equipment in Hospitals in Relation to Patient Outcomes

This study investigates the relationship between the reliability of critical medical equipment (CME) and the effectiveness of CME maintenance management strategies in relation to patient outcomes in 84 public hospitals of a top 20 OECD country. The work has examined the effectiveness of CME maintenance management strategies used by the public hospital system of a large state run health organization. The conceptual framework was designed to examine the significance of the relationship between six variables: (1) types of maintenance management strategies, (2) maintenance services, (3) maintenance practice, (4) medical equipment reliability, (5) maintenance costs and (6) patient outcomes. The results provide interesting insights into the effectiveness of the maintenance strategies used. For example, there appears to be about a 1 in 10 000 probability of failure of anesthesia equipment, but these seem to be confined to specific maintenance situations. There are also some findings in relation to outsourcing of maintenance. For each of the variables listed, results are reported in relation to the various types of maintenance strategies and services. Decision-makers may use these results to evaluate more effective maintenance strategies for their CME and generate more effective patient outcomes.

Development of a Model for the Redesign of Plant Structures

In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model.

Fermat’s Last Theorem a Simple Demonstration

This paper presents two solutions to the Fermat’s Last Theorem (FLT). The first one using some algebraic basis related to the Pythagorean theorem, expression of equations, an analysis of their behavior, when compared with power  and power  and using " the “Well Ordering Principle” of natural numbers it is demonstrated that in Fermat equation . The second one solution is using the connection between  and power  through the Pascal’s triangle or  Newton’s binomial coefficients, where de Fermat equation do not fulfill the first coefficient, then it is impossible that: zn=xn+yn for n>2 and (x, y, z) E Z+ - {0}  

A 3 Dimensional Simulation of the Repeated Load Triaxial Test

A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory.

Design of One – Dimensional Tungsten Gratings for Thermophotovoltaic Emitters

In this paper, a one - dimensional microstructure tungsten grating (pyramids) is optimized for potential application as thermophotovoltaic (TPV) emitter. The influence of gratings geometric parameters on the spectral emittance are studied by using the rigorous coupled-wave analysis (RCWA).The results show that the spectral emittance is affected by the gratings geometrical parameters. The optimum parameters are grating period of 0.5µm, a filling ratio of 0.8 and grating height of h=0.2µm. A broad peak of high emittance is obtained at wavelengths between 0.5 and 1.8µm. The emittance drops below 0.2 at wavelengths above 1.8µm. This can be explained by the surface plasmon polaritons excitation coupled with the grating microstructures. At longer wavelengths, the emittance remains low and this is highly desired for thermophotovoltaic applications to reduce the thermal leakage due to low-energy photons that do not produce any photocurrent. The proposed structure can be used as a selective emitter for a narrow band gap cell such as GaSb. The performance of this simple 1-D emitter proved to be superior to that from more complicated structures. Almost all the radiation from the emitter incident, at angles up to 40°, on the cell, could be utilized to produce a photocurrent. There is no need for a filter.

Study of Effective Moisture Diffusivity of Oak Acorn

The purpose of present work was to study the drying kinetics of whole acorn and its kernel at different drying air temperatures and their effective moisture diffusivity. The results indicated that the drying time of whole acorn was 442, 206 and 188 min at the air temperature of 65, 75 and 85ºC, respectively. At the same temperatures, the drying time of kernel was 131, 56 and 76min. The results showed that the effect of drying air temperature increasing on the drying time reduction could not be significant on acorn drying at all conditions. The effective moisture diffusivity of whole acorn and kernel increased with increasing air temperature from 65 to 75ºC. However more air temperature increasing, led to decreasing this property of acorn kernel. The critical temperature of acorn drying was about 75°C in which acorn kernel had the highest effective moisture diffusivity.

Study of Thermal Effects while Filling an Empty Tank

We are interested in this paper to the thermal effects occurring during the filling of hydrogen tanks. The consequence of this heating on the storage performance of these speakers was appreciated. The motivation comes from the fact that the development of hydrogen as an energy carrier of the future will require strong evolution in the field of storage modes to smaller, less expensive lighter, with a strong security interest and considerable autonomy.

Study of Heat Transfer of Nanofluids in a Circular Tube

Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.

Effects of Ice and Seawater Storing Conditions on the Sensory, Chemical and Microbiological Quality of the Mediterranean Hake (Merluccius merluccius) During Post-Catch Handling and Distribution

Changes in the sensory, chemical and microbiological quality of the Mediterranean hake during post-catch handling and distribution were investigated. 115 fish samples were seasonally received during three stages of the transfer route from the sea to the consumer and two storage methods were recorded, seawater and ice storage. Microbiological evaluation revealed higher status for the ice stored samples regarding heterotrophic bacteria (2.68 log cfu/g and 1.92 log cfu/g at 22oC and 37°C respectively) and psychrotrophic counts (3.20 log cfu/g), with statistically significant differences among storage methods. Sensory evaluation also revealed higher status for the ice stored samples with a mean quality index of 0.17 and a spoilage time estimated at 30 hours, in contrast to seawater storage, which varied from 0.28 to 0.3, and a 14-hour estimated spoilage. Detected pathogens were identified mainly in the seawater stored samples, posing questions on the quality of the product reaching the seafood markets.

Design of Coherent Thermal Emission Source by Excitation of Magnetic Polaritons between Metallic Gratings and an Opaque Metallic Film

The present paper studies a structure consisting of a periodic metallic grating, coated on a dielectric spacer atop an opaque metal substrate, using coherent thermal emission source in the infrared region. It has been theoretically demonstrated that by exciting surface magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer, large emissivity peaks are almost independent of the emission angle and they can be achieved at the resonance frequencies. The reflectance spectrum of the proposed structure shows two resonances dip, which leads to a sharp emissivity peak. The relations of the reflection and absorption properties and the influence of geometric parameters on the radiative properties are investigated by rigorous coupled-wave analysis (RCWA). The proposed structure can be easily constructed, using micro/nanofabrication and can be used as the coherent thermal emission source.

Investigation in Physically-Chemical Parameters of in Latvia Harvested Conventional and Organic Triticale Grains

Triticale is a manmade hybrid of wheat and rye that carries the A and B genome of durum wheat and the R genome of rye. In the scientific literature information about in Latvia harvested organic and conventional triticale grain physically-chemical composition was not found in general. Therefore, the main purpose of the current research was to investigate physically-chemical parameters of in Latvia harvested organic and convectional triticale grains. The research was accomplished on in Year 2012 from State Priekuli Plant Breeding Institute (Latvia) harvested organic and conventional triticale grains: “Dinaro”, “9403-97”, “9405-23” and “9402-3”. In the present research significant differences in chemical composition between organic and conventional triticale grains harvested in Latvia was found. It is necessary to mention that higher 1000 grain weight, bulk density and gluten index was obtained for conventional and organic triticale grain variety “9403-97”. However higher falling number, gluten and protein content was obtained for triticale grain variety “9405-23”.

Combined Hydrothermal Synthesis of Zinc and Magnesium Borates at 100oC Using ZnO, MgO and H3BO3

Magnesium borate(MB) istechnical ceramic for high heat-resisting, corrosion-resisting, super mechanical strength, superinsulation, light weight, high strength, and high coefficient of elasticity. Zinc borate (ZB) can be used as multi-functional synergistic additives with flame retardant additives in polymers. The most important properties are low solubility in water and high dehydration temperature. ZB dehydrates above 290°C and anhydrous ZB has thermal resistance about 400°C. In this study, the raw materials of ZnO, MgO and H3BO3 were used with mole ratio of 1:1:9. With the starting materials hydrothermal method was applied at a temperature of 100oC. The reaction time was determined as 30, 60, 90 and 120 minutes after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result, the forms of Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.