Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold

This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth.

The Growth of the Watermelons with Geometric Shapes and Comparing Retention between Cubic and Hexagonal Forms

Shape and form of the watermelon fruits are important factors to save spaces and reducing damage during storing of the fruits. In order to save spaces and prevent fruit damage in watermelon the following experiment was carried out in the farm. The fruits were boxed when they were approximately one cm less than the box diameter. The cubic, hexagonal forms were compared in this research. To do this, different boxes were designed with different holes on the sides to holes the watermelons fruits for shaping. The shapes of the boxes were hexagonal and cubic. The boxes holes sizes were the same with 10mm diameter each. Each side of the boxes had different holes including: without holes to 75 holes. The result showed that the best shape for watermelon storing to save space and prevent fruit damage was hexagonal form. The percentages of the fruit damage were 33 to 80 respectively.