Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Quality of Donut Supplemented with Hom Nin Rice Flour

Hom Nin rice (Oryza Sativa L.) was processed into flour and used to substitute wheat flour in donuts. The donuts were prepared with 0, 20, 40, 60, and 80% Hom Nin rice flour (HNF). The donuts were subjected to proximate, texture, color and sensory evaluations. The results of the study revealed that the ash, moisture, crude fiber contents increased while crude fat and protein contents decreased as the level of HNF increased. The hardness and chewiness of donut increased as the HNF increased but the cohesiveness, springiness, and specific volume decreased. Color of donut (L*, a*, and b* values) decreased with the addition of HNF. Overall acceptability for the 20-40% HNF additions did not differ significantly from the score of the 100% wheat flour.

Diversification of Sweet Potato Blends and Utilization for Malnutrition and Poverty Alleviation

Value addition to agricultural produce is of possible potential in reducing poverty, improving food security and malnutrition, therefore the need to develop small and microenterprises of sweet potato production. A study was carried out in Nigeria to determine the acceptability of blends sweet potato (Ipomea batatas) and commodities yellow maize (Zea mays), millet (Pennisetum glaucum), soybean (Glycine max), bambara groundnut (Vigna subterranean), guinea corn (Sorghum vulgare), wheat (Triticum aestivum), and roselle (Hibiscus sabdariffa) through sensory evaluation. Sweet potato (Ipomea batatas) roots were processed using two methods: oven and sun drying. The blends were also assessed in terms of functional, chemical and color properties. Most acceptable blends include BAW (80:20 of sweet potato/wheat), BBC (80:20 of sweet potato/guinea corn), AAB (60:40 of sweet potato/guinea corn), YTE (100% soybean), TYG (100% sweet potato), KTN (100% wheat flour), XGP (80:20 of sweet potato/soybean), XAX (60:40 of sweet potato/wheat), LSS (100% Roselle), CHK (100% Guinea corn), and ABC (60:40% of sweet potato/ yellow maize). In addition, carried out chemical analysis revealed that sweet potato has high percentage of vitamins A and C, potassium (K), manganese (Mn), calcium (Ca), magnesium (Mg) and iron (Fe) and fibre content. There is also an increase of vitamin A and Iron in the blended products.

Effects of Ice and Seawater Storing Conditions on the Sensory, Chemical and Microbiological Quality of the Mediterranean Hake (Merluccius merluccius) During Post-Catch Handling and Distribution

Changes in the sensory, chemical and microbiological quality of the Mediterranean hake during post-catch handling and distribution were investigated. 115 fish samples were seasonally received during three stages of the transfer route from the sea to the consumer and two storage methods were recorded, seawater and ice storage. Microbiological evaluation revealed higher status for the ice stored samples regarding heterotrophic bacteria (2.68 log cfu/g and 1.92 log cfu/g at 22oC and 37°C respectively) and psychrotrophic counts (3.20 log cfu/g), with statistically significant differences among storage methods. Sensory evaluation also revealed higher status for the ice stored samples with a mean quality index of 0.17 and a spoilage time estimated at 30 hours, in contrast to seawater storage, which varied from 0.28 to 0.3, and a 14-hour estimated spoilage. Detected pathogens were identified mainly in the seawater stored samples, posing questions on the quality of the product reaching the seafood markets.

Sensory, Microbiological and Chemical Assessment of Cod (Gadus morhua) Fillets during Chilled Storage as Influenced by Bleeding Methods

The effects of seawater and slurry ice bleeding methods on the sensory, microbiological and chemical quality changes of cod fillets during chilled storage were examined in this study. The results from sensory evaluation showed that slurry ice bleeding method prolonged the shelf life of cod fillets up to 13-14 days compared to 10-11 days for fish bled in seawater. Slurry ice bleeding method also led to a slower microbial growth and biochemical developments, resulting lower total plate count (TPC), H2S-producing bacteria count, total volatile basic nitrogen (TVB-N), trimethylamine (TMA), free fatty acid (FFA) content and higher phospholipid content (PL) compared to those of samples bled in seawater. The results of principle component analysis revealed that TPC, H2S-producing bacteria, TVB-N, TMA and FFA were in significant correlation. They were also in negative correlation with sensory evaluation (Torry score), PL and water holding capacity (WHC).

Quality Evaluation of Ready to Eat Potatoes’ Produce in Flexible Packaging

Experiments have been carried out at the Latvia University of Agriculture Department of Food Technology. The aim of this work was to assess the effect of thermal treatment in flexible retort pouch packaging on the quality of potatoes’ produce during the storage time. Samples were evaluated immediately after retort thermal treatment; and following 1; 2; 3 and 4 storage months at the ambient temperature of +18±2ºC in vacuum packaging from polyamide/polyethylene (PA/PE) and aluminum/polyethylene (Al/PE) film pouches with barrier properties. Experimentally the quality of the potatoes’ produce in dry butter and mushroom dressings was characterized by measuring pH, hardness, color, microbiological properties and sensory evaluation. The sterilization was effective in protecting the produce from physical, chemical, and microbial quality degradation. According to the study of obtained data, it can be argued that the selected product processing technology and packaging materials could be applied to provide the safety and security during four-month storage period.

Maydis stigma Improves Physical Traits and Unchanged Sensory Properties of Beef and Chicken Patties

The proximate composition, physical traits and sensory properties of beef and chicken patties incorporated with various level of dried cornsilk (Maydis stigma) were studied. The beef and chicken patties were formulated with either 2%, 4% or 6% of cornsilk. Both cooked beef and chicken patties incorporated with 6% cornsilk recorded the highest protein concentration at 23.3% and 28.42%, respectively. Both cooked beef and chicken patties containing 6% cornsilk significantly recorded the lowest concentration of fat at 11.4% and 14.60%, respectively. Beef and chicken patties formulated with 6% cornsilk recorded the highest cooking yield at 80.13% and 83.03% compared to other treatments. The inclusion of cornsilk did not change the sensory properties and consumer acceptability of cornsilk-based beef and chicken patties. Cornsilk fibre has been effective in improving cooking yield, moisture and fat retention of beef and chicken patties

Sensory Evaluation of the Selected Coffee Products Using Fuzzy Approach

Knowing consumers' preferences and perceptions of the sensory evaluation of drink products are very significant to manufacturers and retailers alike. With no appropriate sensory analysis, there is a high risk of market disappointment. This paper aims to rank the selected coffee products and also to determine the best of quality attribute through sensory evaluation using fuzzy decision making model. Three products of coffee drinks were used for sensory evaluation. Data were collected from thirty judges at a hypermarket in Kuala Terengganu, Malaysia. The judges were asked to specify their sensory evaluation in linguistic terms of the quality attributes of colour, smell, taste and mouth feel for each product and also the weight of each quality attribute. Five fuzzy linguistic terms represent the quality attributes were introduced prior analysing. The judgment membership function and the weights were compared to rank the products and also to determine the best quality attribute. The product of Indoc was judged as the first in ranking and 'taste' as the best quality attribute. These implicate the importance of sensory evaluation in identifying consumers- preferences and also the competency of fuzzy approach in decision making.