Packet Forwarding with Multiprotocol Label Switching

MultiProtocol Label Switching (MPLS) is an emerging technology that aims to address many of the existing issues associated with packet forwarding in today-s Internetworking environment. It provides a method of forwarding packets at a high rate of speed by combining the speed and performance of Layer 2 with the scalability and IP intelligence of Layer 3. In a traditional IP (Internet Protocol) routing network, a router analyzes the destination IP address contained in the packet header. The router independently determines the next hop for the packet using the destination IP address and the interior gateway protocol. This process is repeated at each hop to deliver the packet to its final destination. In contrast, in the MPLS forwarding paradigm routers on the edge of the network (label edge routers) attach labels to packets based on the forwarding Equivalence class (FEC). Packets are then forwarded through the MPLS domain, based on their associated FECs , through swapping the labels by routers in the core of the network called label switch routers. The act of simply swapping the label instead of referencing the IP header of the packet in the routing table at each hop provides a more efficient manner of forwarding packets, which in turn allows the opportunity for traffic to be forwarded at tremendous speeds and to have granular control over the path taken by a packet. This paper deals with the process of MPLS forwarding mechanism, implementation of MPLS datapath , and test results showing the performance comparison of MPLS and IP routing. The discussion will focus primarily on MPLS IP packet networks – by far the most common application of MPLS today.

Secure Internet Connectivity for Dynamic Source Routing (DSR) based Mobile Ad hoc Networks

'Secure routing in Mobile Ad hoc networks' and 'Internet connectivity to Mobile Ad hoc networks' have been dealt separately in the past research. This paper proposes a light weight solution for secure routing in integrated Mobile Ad hoc Network (MANET)-Internet. The proposed framework ensures mutual authentication of Mobile Node (MN), Foreign Agent (FA) and Home Agent (HA) to avoid various attacks on global connectivity and employs light weight hop-by-hop authentication and end-to-end integrity to protect the network from most of the potential security attacks. The framework also uses dynamic security monitoring mechanism to monitor the misbehavior of internal nodes. Security and performance analysis show that our proposed framework achieves good security while keeping the overhead and latency minimal.

Performance Evaluation of Energy Efficient Communication Protocol for Mobile Ad Hoc Networks

A mobile ad hoc network is a network of mobile nodes without any notion of centralized administration. In such a network, each mobile node behaves not only as a host which runs applications but also as a router to forward packets on behalf of others. Clustering has been applied to routing protocols to achieve efficient communications. A CH network expresses the connected relationship among cluster-heads. This paper discusses the methods for constructing a CH network, and produces the following results: (1) The required running costs of 3 traditional methods for constructing a CH network are not so different from each other in the static circumstance, or in the dynamic circumstance. Their running costs in the static circumstance do not differ from their costs in the dynamic circumstance. Meanwhile, although the routing costs required for the above 3 methods are not so different in the static circumstance, the costs are considerably different from each other in the dynamic circumstance. Their routing costs in the static circumstance are also very different from their costs in the dynamic circumstance, and the former is one tenths of the latter. The routing cost in the dynamic circumstance is mostly the cost for re-routing. (2) On the strength of the above results, we discuss new 2 methods regarding whether they are tolerable or not in the dynamic circumstance, that is, whether the times of re-routing are small or not. These new methods are revised methods that are based on the traditional methods. We recommended the method which produces the smallest routing cost in the dynamic circumstance, therefore producing the smallest total cost.

Position Based Routing Protocol with More Reliability in Mobile Ad Hoc Network

Position based routing protocols are the kinds of routing protocols, which they use of nodes location information, instead of links information to routing. In position based routing protocols, it supposed that the packet source node has position information of itself and it's neighbors and packet destination node. Greedy is a very important position based routing protocol. In one of it's kinds, named MFR (Most Forward Within Radius), source node or packet forwarder node, sends packet to one of it's neighbors with most forward progress towards destination node (closest neighbor to destination). Using distance deciding metric in Greedy to forward packet to a neighbor node, is not suitable for all conditions. If closest neighbor to destination node, has high speed, in comparison with source node or intermediate packet forwarder node speed or has very low remained battery power, then packet loss probability is increased. Proposed strategy uses combination of metrics distancevelocity similarity-power, to deciding about giving the packet to which neighbor. Simulation results show that the proposed strategy has lower lost packets average than Greedy, so it has more reliability.

Adaptive Fuzzy Routing in Opportunistic Network (AFRON)

Opportunistic network is a kind of Delay Tolerant Networks (DTN) where the nodes in this network come into contact with each other opportunistically and communicate wirelessly and, an end-to-end path between source and destination may have never existed, and disconnection and reconnection is common in the network. In such a network, because of the nature of opportunistic network, perhaps there is no a complete path from source to destination for most of the time and even if there is a path; the path can be very unstable and may change or break quickly. Therefore, routing is one of the main challenges in this environment and, in order to make communication possible in an opportunistic network, the intermediate nodes have to play important role in the opportunistic routing protocols. In this paper we proposed an Adaptive Fuzzy Routing in opportunistic network (AFRON). This protocol is using the simple parameters as input parameters to find the path to the destination node. Using Message Transmission Count, Message Size and Time To Live parameters as input fuzzy to increase delivery ratio and decrease the buffer consumption in the all nodes of network.

A Review of Coverage and Routing for Wireless Sensor Networks

The special constraints of sensor networks impose a number of technical challenges for employing them. In this review, we study the issues and existing protocols in three areas: coverage and routing. We present two types of coverage problems: to determine the minimum number of sensor nodes that need to perform active sensing in order to monitor a certain area; and to decide the quality of service that can be provided by a given sensor network. While most routing protocols in sensor networks are data-centric, there are other types of routing protocols as well, such as hierarchical, location-based, and QoS-aware. We describe and compare several protocols in each group. We present several multipath routing protocols and single-path with local repair routing protocols, which are proposed for recovering from sensor node crashes. We also discuss some transport layer schemes for reliable data transmission in lossy wireless channels.

OXADM Asymmetrical Optical Device: Extending the Application to FTTH System

With the drastically growth in optical communication technology, a lossless, low-crosstalk and multifunction optical switch is most desirable for large-scale photonic network. To realize such a switch, we have introduced the new architecture of optical switch that embedded many functions on single device. The asymmetrical architecture of OXADM consists of 3 parts; selective port, add/drop operation, and path routing. Selective port permits only the interest wavelength pass through and acts as a filter. While add and drop function can be implemented in second part of OXADM architecture. The signals can then be re-routed to any output port or/and perform an accumulation function which multiplex all signals onto single path and then exit to any interest output port. This will be done by path routing operation. The unique features offered by OXADM has extended its application to Fiber to-the Home Technology (FTTH), here the OXADM is used as a wavelength management element in Optical Line Terminal (OLT). Each port is assigned specifically with the operating wavelengths and with the dynamic routing management to ensure no traffic combustion occurs in OLT.

Pulsed Multi-Layered Image Filtering: A VLSI Implementation

Image convolution similar to the receptive fields found in mammalian visual pathways has long been used in conventional image processing in the form of Gabor masks. However, no VLSI implementation of parallel, multi-layered pulsed processing has been brought forward which would emulate this property. We present a technical realization of such a pulsed image processing scheme. The discussed IC also serves as a general testbed for VLSI-based pulsed information processing, which is of interest especially with regard to the robustness of representing an analog signal in the phase or duration of a pulsed, quasi-digital signal, as well as the possibility of direct digital manipulation of such an analog signal. The network connectivity and processing properties are reconfigurable so as to allow adaptation to various processing tasks.

Greedy Geographical Void Routing for Wireless Sensor Networks

With the advantage of wireless network technology, there are a variety of mobile applications which make the issue of wireless sensor networks as a popular research area in recent years. As the wireless sensor network nodes move arbitrarily with the topology fast change feature, mobile nodes are often confronted with the void issue which will initiate packet losing, retransmitting, rerouting, additional transmission cost and power consumption. When transmitting packets, we would not predict void problem occurring in advance. Thus, how to improve geographic routing with void avoidance in wireless networks becomes an important issue. In this paper, we proposed a greedy geographical void routing algorithm to solve the void problem for wireless sensor networks. We use the information of source node and void area to draw two tangents to form a fan range of the existence void which can announce voidavoiding message. Then we use source and destination nodes to draw a line with an angle of the fan range to select the next forwarding neighbor node for routing. In a dynamic wireless sensor network environment, the proposed greedy void avoiding algorithm can be more time-saving and more efficient to forward packets, and improve current geographical void problem of wireless sensor networks.

An Efficient MIPv6 Return Routability Scheme Based on Geometric Computing

IETF defines mobility support in IPv6, i.e. MIPv6, to allow nodes to remain reachable while moving around in the IPv6 internet. When a node moves and visits a foreign network, it is still reachable through the indirect packet forwarding from its home network. This triangular routing feature provides node mobility but increases the communication latency between nodes. This deficiency can be overcome by using a Binding Update (BU) scheme, which let nodes keep up-to-date IP addresses and communicate with each other through direct IP routing. To further protect the security of BU, a Return Routability (RR) procedure was developed. However, it has been found that RR procedure is vulnerable to many attacks. In this paper, we will propose a lightweight RR procedure based on geometric computing. In consideration of the inherent limitation of computing resources in mobile node, the proposed scheme is developed to minimize the cost of computations and to eliminate the overhead of state maintenance during binding updates. Compared with other CGA-based BU schemes, our scheme is more efficient and doesn-t need nonce tables in nodes.

Using of Latin Router for Routing Wavelength with Configuration Algorithm

Optical network uses a tool for routing which is called Latin router. These routers use particular algorithms for routing. In this paper, we present algorithm for configuration of optical network that is optimized regarding previous algorithm. We show that by decreasing the number of hops for source-destination in lightpath number of satisfied request is less. Also we had shown that more than single-hop lightpath relating single-hop lightpath is better.

Improving Packet Latency of Video Sensor Networks

Video sensor networks operate on stringent requirements of latency. Packets have a deadline within which they have to be delivered. Violation of the deadline causes a packet to be treated as lost and the loss of packets ultimately affects the quality of the application. Network latency is typically a function of many interacting components. In this paper, we propose ways of reducing the forwarding latency of a packet at intermediate nodes. The forwarding latency is caused by a combination of processing delay and queueing delay. The former is incurred in order to determine the next hop in dynamic routing. We show that unless link failures in a very specific and unlikely pattern, a vast majority of these lookups are redundant. To counter this we propose source routing as the routing strategy. However, source routing suffers from issues related to scalability and being impervious to network dynamics. We propose solutions to counter these and show that source routing is definitely a viable option in practical sized video networks. We also propose a fast and fair packet scheduling algorithm that reduces queueing delay at the nodes. We support our claims through extensive simulation on realistic topologies with practical traffic loads and failure patterns.

Induction of alpha-Amylase in Wheat Grain Cultivars as an Indicator of Resistance to Pre-harvest Sprouting

The influence of humidity and low temperature on the α- amylase activity and isoenzyme composition of grains of different wheat varieties have been studied. The identified samples of varieties have significant difference in the level of enzyme induction under the impact of high humidity and low temperature. It is proposed to use this methodological approach for testing genotypes and wheat breeding lines for resistance to pre-harvest sprouting (PHS).

Exploiting Query Feedback for Efficient Query Routing in Unstructured Peer-to-peer Networks

Unstructured peer-to-peer networks are popular due to its robustness and scalability. Query schemes that are being used in unstructured peer-to-peer such as the flooding and interest-based shortcuts suffer various problems such as using large communication overhead long delay response. The use of routing indices has been a popular approach for peer-to-peer query routing. It helps the query routing processes to learn the routing based on the feedbacks collected. In an unstructured network where there is no global information available, efficient and low cost routing approach is needed for routing efficiency. In this paper, we propose a novel mechanism for query-feedback oriented routing indices to achieve routing efficiency in unstructured network at a minimal cost. The approach also applied information retrieval technique to make sure the content of the query is understandable and will make the routing process not just based to the query hits but also related to the query content. Experiments have shown that the proposed mechanism performs more efficient than flood-based routing.

Studies on Determination of the Optimum Distance Between the Tmotes for Optimum Data Transfer in a Network with WLL Capability

Using mini modules of Tmotes, it is possible to automate a small personal area network. This idea can be extended to large networks too by implementing multi-hop routing. Linking the various Tmotes using Programming languages like Nesc, Java and having transmitter and receiver sections, a network can be monitored. It is foreseen that, depending on the application, a long range at a low data transfer rate or average throughput may be an acceptable trade-off. To reduce the overall costs involved, an optimum number of Tmotes to be used under various conditions (Indoor/Outdoor) is to be deduced. By analyzing the data rates or throughputs at various locations of Tmotes, it is possible to deduce an optimal number of Tmotes for a specific network. This paper deals with the determination of optimum distances to reduce the cost and increase the reliability of the entire sensor network with Wireless Local Loop (WLL) capability.

Routing in Mobile Wireless Networks for Realtime Multimedia Applications- Reuse of Virtual Circuits

Routing places an important role in determining the quality of service in wireless networks. The routing methods adopted in wireless networks have many drawbacks. This paper aims to review the current routing methods used in wireless networks. This paper proposes an innovative solution to overcome the problems in routing. This solution is aimed at improving the Quality of Service. This solution is different from others as it involves the resuage of the part of the virtual circuits. This improvement in quality of service is important especially in propagation of multimedia applications like video, animations etc. So it is the dire need to propose a new solution to improve the quality of service in ATM wireless networks for multimedia applications especially during this era of multimedia based applications.