Thermal Analysis of Open-Cycle Regenerator Gas-Turbine Power-Plant

Regenerative gas turbine engine cycle is presented that yields higher cycle efficiencies than simple cycle operating under the same conditions. The power output, efficiency and specific fuel consumption are simulated with respect to operating conditions. The analytical formulae about the relation to determine the thermal efficiency are derived taking into account the effected operation conditions (ambient temperature, compression ratio, regenerator effectiveness, compressor efficiency, turbine efficiency and turbine inlet temperature). Model calculations for a wide range of parameters are presented, as are comparisons with simple gas turbine cycle. The power output and thermal efficiency are found to be increasing with the regenerative effectiveness, and the compressor and turbine efficiencies. The efficiency increased with increase the compression ratio to 5, then efficiency decreased with increased compression ratio, but in simple cycle the thermal efficiency always increase with increased in compression ratio. The increased in ambient temperature caused decreased thermal efficiency, but the increased in turbine inlet temperature increase thermal efficiency.

The Adsorption of Lead from Aqueous Solutions Using Coal Fly Ash : Effect of Crystallinity

Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, like quartz and mullite. In this study, the effect of CFA crystallinity toward lead adsorption capacity was investigated. To get solid with various crystallinity, the solution of sodium hydroxide (NaOH) of 1-7 M was used to treat CFA at various temperature and reflux time. Furthermore, to evaluate the effect of NaOH-treated CFA with respect to adsorption capacity, the treated CFA were examine as adsorbent for removing lead in the solution. The result shows that using NaOH to treat CFA causes crystallinity of quartz and mullite decrease. At higher NaOH concentration (>3M), in addition the damage of quartz and mullite crystallinity is followed by crystal formation called hydroxysodalite. The lower crystalllinity, the higher adsorption capacity.

Evolution, Tendencies and Impact of Standardization of Input/Output Platforms in Full Scale Simulators for Training Power Plant Operators

This article presents the evolution and technological changes implemented on the full scale simulators developed by the Simulation Department of the Instituto de Investigaciones Eléctricas1 (Mexican Electric Research Institute) and located at different training centers around the Mexican territory, and allows US to know the last updates, basically from the input/output view point, of the current simulators at some facilities of the electrical sector as well as the compatible industry of the electrical manufactures and industries such as Comision Federal de Electricidad (CFE*, The utility Mexican company). Tendencies of these developments and impact within the operators- scope are also presented.

An Assessment of the Small Hydropower Potential of Sisakht Region of Yasuj

Energy generated by the force of water in hydropower can provide a more sustainable, non-polluting alternative to fossil fuels, along with other renewable sources of energy, such as wind, solar and tidal power, bio energy and geothermal energy. Small scale hydroelectricity in Iran is well suited for “off-grid" rural electricity applications, while other renewable energy sources, such as wind, solar and biomass, can be beneficially used as fuel for pumping groundwater for drinking and small scale irrigation in remote rural areas or small villages. Small Hydro Power plants in Iran have very low operating and maintenance costs because they consume no fossil or nuclear fuel and do not involve high temperature processes. The equipment is relatively simple to operate and maintain. Hydropower equipment can adjust rapidly to load changes. The extended equipment life provides significant economic advantages. Some hydroelectric plants installed 100 years ago still operate reliably. The Polkolo river is located on Karun basin at southwest of Iran. Situation and conditions of Polkolo river are evaluated for construction of small hydropower in this article. The topographical conditions and the existence of permanent water from springs provide the suitability to install hydroelectric power plants on the river Polkolo. The cascade plant consists of 9 power plants connected with each other and is having the total head as 1100m and discharge about 2.5cubic meter per second. The annual production of energy is 105.5 million kwh.

Performance Evaluation of A Stratified Chilled- Water Thermal Storage System

In countries with hot climates, air-conditioning forms a large proportion of annual peak electrical demand, requiring expansion of power plants to meet the peak demand, which goes unused most of the time. Use of well-designed cool storage can offset the peak demand to a large extent. In this study, an air conditioning system with naturally stratified storage tank was designed, constructed and tested. A new type of diffuser was designed and used in this study. Factors that influence the performance of chilled water storage tanks were investigated. The results indicated that stratified storage tank consistently stratified well without any physical barrier. Investigation also showed that storage efficiency decreased with increasing flow rate due to increased mixing of warm and chilled water. Diffuser design and layout primarily affected the mixing near the inlet diffuser and the extent of this mixing had primary influence on the shape of the thermocline. The heat conduction through tank walls and through the thermocline caused widening of mixed volume. Thermal efficiency of stratified storage tanks was as high as 90 percent, which indicates that stratified tanks can effectively be used as a load management technique.

Turbine Speed Variation Study in Gas Power Plant for an Active Generator

This research deals with investigations on the “Active Generator" under rotor speed variations and output frequency control. It runs at turbine speed and it is connected to a three phase electrical power grid which has its own frequency different from turbine frequency. In this regard the set composed of a four phase synchronous generator and a natural commutated matrix converter (NCMC) made with thyristors, is called active generator. It replaces a classical mechanical gearbox which introduces many drawbacks. The main idea in this article is the presentation of frequency control at grid side when turbine runs at variable speed. Frequency control has been done by linear and step variations of the turbine speed. Relation between turbine speed (frequency) and main grid zero sequence voltage frequency is presented.

Tropical Peat Soil Stabilization using Class F Pond Ash from Coal Fired Power Plant

This paper presents the stabilization potential of Class F pond ash (PA) from a coal fired thermal power station on tropical peat soil. Peat or highly organic soils are well known for their high compressibility, natural moisture content, low shear strength and long-term settlement. This study investigates the effect of different amount (i.e., 5, 10, 15 and 20%) of PA on peat soil, collected from Sarawak, Malaysia, mainly compaction and unconfined compressive strength (UCS) properties. The amounts of PA added to the peat soil sample as percentage of the dry peat soil mass. With the increase in PA content, the maximum dry density (MDD) of peat soil increases, while the optimum moisture content (OMC) decreases. The UCS value of the peat soils increases significantly with the increase of PA content and also with curing periods. This improvement on compressive strength of tropical peat soils indicates that PA has the potential to be used as a stabilizer for tropical peat soil. Also, the use of PA in soil stabilization helps in reducing the pond volume and achieving environment friendly as well as a sustainable development of natural resources.

Multi-agent On-line Monitor for the Safety of Critical Systems

Operational safety of critical systems, such as nuclear power plants, industrial chemical processes and means of transportation, is a major concern for system engineers and operators. A means to assure that is on-line safety monitors that deliver three safety tasks; fault detection and diagnosis, alarm annunciation and fault controlling. While current monitors deliver these tasks, benefits and limitations in their approaches have at the same time been highlighted. Drawing from those benefits, this paper develops a distributed monitor based on semi-independent agents, i.e. a multiagent system, and monitoring knowledge derived from a safety assessment model of the monitored system. Agents are deployed hierarchically and provided with knowledge portions and collaboration protocols to reason and integrate over the operational conditions of the components of the monitored system. The monitor aims to address limitations arising from the large-scale, complicated behaviour and distributed nature of monitored systems and deliver the aforementioned three monitoring tasks effectively.

Selection of Photovoltaic Solar Power Plant Investment Projects - An ANP Approach

In this paper the Analytic Network Process (ANP) is applied to the selection of photovoltaic (PV) solar power projects. These projects follow a long management and execution process from plant site selection to plant start-up. As a consequence, there are many risks of time delays and even of project stoppage. In the case study presented in this paper a top manager of an important Spanish company that operates in the power market has to decide on the best PV project (from four alternative projects) to invest based on risk minimization. The manager identified 50 project execution delay and/or stoppage risks. The influences among elements of the network (groups of risks and alternatives) were identified and analyzed using the ANP multicriteria decision analysis method. After analyzing the results the main conclusion is that the network model can manage all the information of the real-world problem and thus it is a decision analysis model recommended by the authors. The strengths and weaknesses ANP as a multicriteria decision analysis tool are also described in the paper.

Impact Assessment of Air Pollution Stress on Plant Species through Biochemical Estimations

The present study was conducted to investigate the response of plants exposed to lignite-based thermal power plant emission. For this purpose, five plant species were collected from 1.0 km distance (polluted site) and control plants were collected from 20.0 km distance (control site) to thermal power plant. The common tree species Cassia siamea Lamk., Polyalthia longifolia. Sonn, Acacia longifolia (Andrews) Wild., Azadirachta indica A.Juss, Ficus religiosa L. were selected as test plants. Photosynthetic pigments changes (chlorophyll a, chlorophyll b and carotenoids) and rubisco enzyme modifications were studied. Reduction was observed in the photosynthetic pigments of plants growing in polluted site and also large sub unit of the rubisco enzyme was degraded in Azadirachta indica A. Juss collected from polluted site.

Sediment Fixation of Arsenic in the Ash Lagoon of a Coal-Fired Power Plant, Philippines

Arsenic in the sediments of the ash lagoons of the coal-fired power plant in Pagbilao, Quezon Province in the Philippines was sequentially extracted to determine its potential for leaching to the groundwater and the adjacent marine environment. Results show that 89% of the As is bound to the quasi-crystalline Fe/Mn oxides and hydroxide matrix in the sediments, whereas, the adsorbed and exchangeable As hosted by the clay minerals, representing those that are easiest to release from the sediment matrix, is below 10% of the acid leachable As. These As in these sediment matrices represent the possible maximum amount of As that can be released and supplied to the groundwater and the adjacent marine environment. Of the 89% reducible As, up to 4% is associated with the easily reducible variety, whereas, the rest is more strongly bonded by the moderately reducible variety. Based on the long-term As content of the lagoon water, the average desorption rate of As is calculated to be very low -- 0.3-0.5% on the average and 0.6% on the maximum. This indicates that As is well-fixed by its sediment matrices in the ash lagoon, attenuating the influx of As into the adjacent groundwater and marine environments.

Determination of the Specific Activity of Soil and Fertilizers in Sergipe - Brazil

Measurements of radioactivity in the environment is of great importance to monitor and control the levels of radiation to which man is exposed directly or indirectly. It is necessary to show that regardless of working or being close to nuclear power plants, people are daily in contact with some amount of radiation from the actual environment and food that are ingested, contradicting the view of most of them. The aim of this study was to analyze the rate of natural and artificial radiation from radionuclides present in cement, soil and fertilizers used in Sergipe State – Brazil. The radionuclide activitiesmeasured all samples arebelow the Brazilian limit of the exclusion and exemption criteria from the requirement of radiation protection.It was detected Be-7 in organic fertilizers that means a short interval between the brewing processes for use in agriculture. It was also detected an unexpected Cs-137 in some samples; however its activities does not represent risk for the population. Th-231 was also found in samples of soil and cement in the state of Sergipe that is an unprecedented result.

A Survey of Various Algorithms for Vlsi Physical Design

Electronic Systems are the core of everyday lives. They form an integral part in financial networks, mass transit, telephone systems, power plants and personal computers. Electronic systems are increasingly based on complex VLSI (Very Large Scale Integration) integrated circuits. Initial electronic design automation is concerned with the design and production of VLSI systems. The next important step in creating a VLSI circuit is Physical Design. The input to the physical design is a logical representation of the system under design. The output of this step is the layout of a physical package that optimally or near optimally realizes the logical representation. Physical design problems are combinatorial in nature and of large problem sizes. Darwin observed that, as variations are introduced into a population with each new generation, the less-fit individuals tend to extinct in the competition of basic necessities. This survival of fittest principle leads to evolution in species. The objective of the Genetic Algorithms (GA) is to find an optimal solution to a problem .Since GA-s are heuristic procedures that can function as optimizers, they are not guaranteed to find the optimum, but are able to find acceptable solutions for a wide range of problems. This survey paper aims at a study on Efficient Algorithms for VLSI Physical design and observes the common traits of the superior contributions.

RadMote: A Mobile Framework for Radiation Monitoring in Nuclear Power Plants

Wireless Sensor Networks (WSNs) have attracted the attention of many researchers. This has resulted in their rapid integration in very different areas such as precision agriculture,environmental monitoring, object and event detection and military surveillance. Due to the current WSN characteristics this technology is specifically useful in industrial areas where security, reliability and autonomy are basic, such as nuclear power plants, chemical plants, and others. In this paper we present a system based on WSNs to monitor environmental conditions around and inside a nuclear power plant, specifically, radiation levels. Sensor nodes, equipped with radiation sensors, are deployed in fixed positions throughout the plant. In addition, plant staff are also equipped with mobile devices with higher capabilities than sensors such as for example PDAs able to monitor radiation levels and other conditions around them. The system enables communication between PDAs, which form a Mobile Ad-hoc Wireless Network (MANET), and allows workers to monitor remote conditions in the plant. It is particularly useful during stoppage periods for inspection or in the event of an accident to prevent risk situations.

Design of a MSF Desalination Plant to be Supplied by a New Specific 42 MW Power Plant Located in Iran

Nowadays, desalination of salt water is considered an important industrial process. In many parts of the world, particularly in the gulf countries, the multi-stage flash (MSF) water desalination has an essential contribution in the production of fresh water. In this study, a simple mathematical model is defined to design a MSF desalination system and the feasibility of using the MSF desalination process in proximity of a 42 MW power plant is investigated. This power plant can just provide 10 ton/h superheated steam from low pressure (LP) section of heat recovery steam generator (HRSG) for thermal desalting system. The designed MSF system with gained output ratio (GOR) of 10.3 has 24 flashing stages and can produce 2480 ton/d of fresh water. The expected performance characteristics of the designed MSF desalination plant are determined. In addition, the effect of motive water pressure on the amount of non-condensable gases removed by water jet vacuum pumps is investigated.

Decision Support for the Selection of Electric Power Plants Generated from Renewable Sources

Decision support based upon risk analysis into comparison of the electricity generation from different renewable energy technologies can provide information about their effects on the environment and society. The aim of this paper is to develop the assessment framework regarding risks to health and environment, and the society-s benefits of the electric power plant generation from different renewable sources. The multicriteria framework to multiattribute risk analysis technique and the decision analysis interview technique are applied in order to support the decisionmaking process for the implementing renewable energy projects to the Bangkok case study. Having analyses the local conditions and appropriate technologies, five renewable power plants are postulated as options. As this work demonstrates, the analysis can provide a tool to aid decision-makers for achieving targets related to promote sustainable energy system.

Migration and Accumulation of Artificial Radionuclides in the System Water-Soil-Plants Depending on Polymers Applying

The possibility of radionuclides-related contamination of lands at agricultural holdings defines the necessity to apply special protective measures in plant growing. The aim of researches is to elucidate the influence of polymers applying on biological migration of man-made anthropogenic radionuclides 90Sr and 137Cs in the system water - soil – plant. The tests are being carried out under field conditions with and without application of polymers in root-inhabited media in more radioecological tension zone (with the radius of 7 km from the Armenian Nuclear Power Plant). The polymers on the base of K+, Caµ, KµCaµ ions were tested. Productivity of pepper depending on the presence and type of polymer material, content of artificial radionuclides in waters, soil and plant material has been determined. The character of different polymers influence on the artificial radionuclides migration and accumulation in the system water-soil-plant and accumulation in the plants has been cleared up.

Pollution Induced Structural and Physico-Chemical Changes in Algal Community: A Case Study of River Pandu of North India

The study area receives a wide variety of wastes generated by municipalities and the industries like paints and pigments, metal processing industries, thermal power plants electroprocessing industries etc. The Physico-chemical and structural investigation of water from river Pandu indicated high level of chlorides and calcium which made the water unsuitable for human use. Algae like Cyclotella fumida, Asterionella Formosa, Cladophora glomerata, Pediastrum simplex, Scenedesmus bijuga, Cladophora glomerata were the dominant pollution tolerant species recorded under these conditions. The sensitive and less abundant species of algae included Spirogyra sps., Merismopedia sps. The predominance colonies of Zygnema sps, Phormidium sps, Mycrocystis aeruginosa, Merismopedia minima, Pandorina morum, seems to correlate with high organic contents of Pandu river water. This study assumes significance as some algae can be used as bioindicators of water pollution and algal floral of a municipal drain carrying waste effluents from industrial area Kanpur and discharge them into the river Pandu flowing onto southern outskirts of Kanpur city.

An Innovative Wireless Sensor Network Protocol Implementation using a Hybrid FPGA Technology

Traditional development of wireless sensor network mote is generally based on SoC1 platform. Such method of development faces three main drawbacks: lack of flexibility in terms of development due to low resource and rigid architecture of SoC; low capability of evolution and portability versus performance if specific micro-controller architecture features are used; and the rapid obsolescence of micro-controller comparing to the long lifetime of power plants or any industrial installations. To overcome these drawbacks, we have explored a new approach of development of wireless sensor network mote using a hybrid FPGA technology. The application of such approach is illustrated through the implementation of an innovative wireless sensor network protocol called OCARI.

CNet Module Design of IMCS

IMCS is Integrated Monitoring and Control System for thermal power plant. This system consists of mainly two parts; controllers and OIS (Operator Interface System). These two parts are connected by Ethernet-based communication. The controller side of communication is managed by CNet module and OIS side is managed by data server of OIS. CNet module sends the data of controller to data server and receives commend data from data server. To minimizes or balance the load of data server, this module buffers data created by controller at every cycle and send buffered data to data server on request of data server. For multiple data server, this module manages the connection line with each data server and response for each request from multiple data server. CNet module is included in each controller of redundant system. When controller fail-over happens on redundant system, this module can provide data of controller to data sever without loss. This paper presents three main features – separation of get task, usage of ring buffer and monitoring communication status –of CNet module to carry out these functions.