Comparative Studies on Dissimilar Metals thin Sheets Using Laser Beam Welding - A Review

Laser beam welding for the dissimilar Titanium and Aluminium thin sheets is an emerging area which is having wider applications in aerospace, aircraft, automotive, electronics and in other industries due to its high speed, non-contact, precision with low heat effects, least welding distortion, low labor costs and convenient operation. Laser beam welding of dissimilar metal combinations are increasingly demanded due to high energy densities with small fusion and heat affected zones. Furthermore, no filler or electrode material is required and contamination of weld is also very small. The present study is to reviews the influence of different parameters like laser power, welding speed, power density, beam diameter, focusing distance and type of shielding gas on the mechanical properties of dissimilar metal combinations like SS/Al, Cu/Al and Ti/Al focusing on aluminum to other materials. Research findings reveal that Ti/Al combination gives better metallurgical and mechanical properties than other combinations such as SS/Al and Cu/Al.

Using Trip Planners in Developing Proper Transportation Behavior

The article discusses multimodal mobility in contemporary societies as a main planning and organization issue in the functioning of administrative bodies, a problem which really exists in the space of contemporary cities in terms of shaping modern transport systems. The article presents classification of available resources and initiatives undertaken for developing multimodal mobility. Solutions can be divided into three groups of measures – physical measures in the form of changes of the transport network infrastructure, organizational ones (including transport policy) and information measures. The latter ones include in particular direct support for people travelling in the transport network by providing information about ways of using available means of transport. A special measure contributing to this end is a trip planner. The article compares several selected planners. It includes a short description of the Green Travelling Project, which aims at developing a planner supporting environmentally friendly solutions in terms of transport network operation. The article summarizes preliminary findings of the project.

Battery/Supercapacitor Emulator for Chargers Functionality Testing

In this paper, design of solid-state battery/supercapacitor emulator based on dc-dc boost converter is described. The emulator mimics charging behavior of any storage device based on a predefined behavior set by the user. The device is operated by a two-level control structure: high-level emulating controller and low- level input voltage controller. Simulation and experimental results are shown to demonstrate the emulator operation.

Dual Band Fractal Antenna for Wireless Sensor Network Application

A wireless sensor network (WSN) is a collection of sensor nodes organized into a cooperative network. These nodes communicate through a wireless antenna. Reduction in physical size and multiband operation is an important requirement of WSN antenna. Fractal antenna is used for miniaturization and multiband operation. The self-similar or self-affine and space filling property of fractal geometry increases the effective electrical length of the antenna, reduces the size and make them frequency independent. This paper elaborates on Dual band fractal antenna with Coplanar Waveguide (CPW) feed for WSN. The proposed antenna is designed on a FR4 substrate with the dimension of 27mm x 28.5mm x 1.6mm, resonates at 2.4GHz and 5.2GHz with a return loss less than -10dB. The design and simulation process is carried out using IE3D simulation software. The simulated and measured results are found in good agreement.

Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications

A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x- axis, yaxis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel polyfractal antenna are demonstrated.

Experimental Challenges and Solutions in Design and Operation of the Test Rig for Water Lubricated Journal Bearing

The study deals with the challenges in developing a test rig to test the performance of water lubricated journal bearing. The test rig is designed to simulate the working conditions of the bearing in order to understand their performance before they are put in operation. The bearing that is studied is the commercially available water lubricated bearing which has a rubber liner bonded with a rigid metal shell. The lubricant enters the bearing axially through a pressurized inlet tank and exits to an outlet tank which is at sufficiently low pressure. The load on the bearing is applied through the dead weight system which acts both in upward and downward direction so that net load acts on the bearing. The issues in feeding the lubricant into the bearing from the inlet side and preventing the leakage of the lubricant is discussed. The application of the load on the test bearing while maintaining the bearing afloat is also discussed.

Biomass Gasification and Microcogeneration Unit – EZOB Technology

This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot-air turbo-set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.

The Strategy for Increasing the Competitiveness of Georgia

The paper discusses economic policy of Georgia aiming to increase national competitiveness as well as the tools and means which will help to improve the competitiveness of the country. The sectors of the economy, in which the country can achieve the competitive advantage, are studied. It is noted that the country’s economic policy plays an important role in obtaining and maintaining the competitive advantage - authority should take measures to ensure high level of education; scientific and research activities should be funded by the state; foreign direct investments should be attracted mainly in science-intensive industries; adaptation with the latest scientific achievements of the modern world and deepening of scientific and technical cooperation. Stable business environment and export oriented strategy is the basis for the country’s economic growth. As the outcome of the research, the paper suggests the strategy for improving competitiveness in Georgia; recommendations are provided based on relevant conclusions.

Variation of the Dynamic Characteristics of a Spindle with the Change of Bearing Preload

This paper presents the variation of the dynamic characteristics of a spindle with the change of bearing preload. The correlations between the variation of bearing preload and fundamental modal parameters were first examined by conducting vibration tests on physical spindle units. Experimental measurements show that the dynamic compliance and damping ratio associated with the dominating modes were affected to vary with variation of the bearing preload. When the bearing preload was slightly deviated from a standard value, the modal frequency and damping ability also vary to different extent, which further enable the spindle to perform with different compliance. For the spindle used in this study, a standard preload value set on bearings would enable the spindle to behave a higher stiffness as compared with others with a preload variation. This characteristic can be served as a reference to examine the variation of bearing preload of spindle in assemblage or operation.

Legal Problems with the Thai Political Party Establishment

Each of the countries around the world has different ways of management and many of them depend on people to administrate their country. Thailand, for example, empowers the sovereignty of Thai people under constitution; however, our Thai voting system is not able to flow fast enough under the current Political management system. The sovereignty of Thai people is addressing this problem through representatives during current elections, in order to set a new policy for the countries ideology to change in the House and the Cabinet. This is particularly important in a democracy to be developed under our current political institution. The Organic Act on Political Parties 2007 is the establishment we have today that is causing confrontations within the establishment. There are many political parties that will soon be abolished. Many political parties have already been subsidized. This research study is to analyze the legal problems with the political party establishment under the Organic Act on Political Parties 2007. This will focus on the freedom of each political establishment compared to an effective political operation. Textbooks and academic papers will be referenced from studies home and abroad. The study revealed that Organic Act on Political Parties 2007 has strict provisions on the political structure over the number of members and the number of branches involved within political parties system. Such operations shall be completed within one year; but under the existing laws the small parties are not able to participate with the bigger parties. The cities are capable of fulfilling small political party requirements but fail to become coalesced because the current laws won't allow them to be united as one. It is important to allow all independent political parties to join our current political structure. Board members can’t help the smaller parties to become a large organization under the existing Thai laws. Creating a new establishment that functions efficiently throughout all branches would be one solution to these legal problems between all political parties. With this new operation, individual political parties can participate with the bigger parties during elections. Until current political institutions change their system to accommodate public opinion, these current Thai laws will continue to be a problem with all political parties in Thailand.

Operating Live E! Digital Meteorological Equipments Using Solar Photovoltaics

We installed solar panels and digital meteorological equipments whose electrical power is supplied using PV on July 13, 2011. Then, the relationship between the electric power generation and the irradiation, air temperature, and wind velocity was investigated on a roof at a university. The electrical power generation, irradiation, air temperature, and wind velocity were monitored over two years. By analyzing the measured meteorological data and electric power generation data using PTC, we calculated the size of the solar panel that is most suitable for this system. We also calculated the wasted power generation using PTC with the measured meteorological data obtained in this study. In conclusion, to reduce the "wasted power generation", a smaller-size solar panel is required for stable operation.

Studies on Ti/Al Sheet Joint Using Laser Beam Welding – A Review

Laser beam welding has wide acceptability due to least welding distortion, low labour costs and convenient operation. However, laser welding for dissimilar titanium and aluminium alloys is a new area which is having wider applications in aerospace, aircraft, automotive, electronics and other industries. The present study is concerned with welding parameters namely laser power, welding speed, focusing distance and type of shielding gas and thereby evaluate welding performance of titanium and aluminium alloy thin sheets. This paper reviews the basic concepts associated with different parameters of Ti/Al sheet joint using Laser beam welding.

Adoption of Lean Thinking and Service Improvement for Care Home Service

Ageing population is a global trend; therefore the need of care service has been increasing dramatically. There are three basic forms of service delivered to the elderly: institution, community, and home. Particularly, the institutional service can be seen as an extension of medical service. The nursing home or so-called care home which is equipped with professional staff and facilities can provide a variety of service including rehabilitation service, short-term care, and long term care. Similar to hospital and other health care service, care home service do need to provide quality and cost-effective service to satisfy the dwellers. The main purpose of this paper is to show how lean thinking and service innovation can be applied to care home operation. The issues and key factors of implementing lean practice are discussed.

Design and Analysis of a Low Power High Speed 1 Bit Full Adder Cell Based On TSPC Logic with Multi-Threshold CMOS

An adder is one of the most integral component of a digital system like a digital signal processor or a microprocessor. Being an extremely computationally intensive part of a system, the optimization for speed and power consumption of the adder is of prime importance. In this paper we have designed a 1 bit full adder cell based on dynamic TSPC logic to achieve high speed operation. A high threshold voltage sleep transistor is used to reduce the static power dissipation in standby mode. The circuit is designed and simulated in TSPICE using TSMC 180nm CMOS process. Average power consumption, delay and power-delay product is measured which showed considerable improvement in performance over the existing full adder designs.

Hydraulic Unbalance in Oil Injected Twin Rotary Screw Compressor Vibration Analysis (A Case History Related to Iran Oil Industries)

Vibration analysis of screw compressors is one of the most challenging cases in preventive maintenance. This kind of equipment considered as vibration bad actor facilities in industrial plants. On line condition monitoring systems developed too much in recent years. The high frequency vibration of ball bearings, gears, male and female caused complex fast Fourier transform (FFT) and time wave form (TWF) in screw compressors. The male and female randomly are sent to balance shop for balancing operation. This kind of operation usually caused some bending in rotors during the process that could cause further machining in such equipment. This kind of machining operation increased the vibration analysis complexity beside some process characteristic abnormality like inlet and out let pressure and temperature. In this paper mechanical principal and different type of screw compressors explained. Besides, some new condition monitoring systems and techniques for screw compressors discussed. Finally, one of the common behavior of oil injected twin rotary screw compressors called hydraulic unbalance that usually occurred after machining operation of male or female and have some specific characteristics in FFT and TWF discussed in details through a case history related to Iran oil industries.

Calculus of Turbojet Performances for Ideal Case

Developments in turbine cooling technology play an important role in increasing the thermal efficiency and the power output of recent gas turbines, in particular the turbojets. Advanced turbojets operate at high temperatures to improve thermal efficiency and power output. These temperatures are far above the permissible metal temperatures. Therefore, there is a critical need to cool the blades in order to give theirs a maximum life period for safe operation. The focused objective of this work is to calculate the turbojet performances, as well as the calculation of turbine blades cooling. The developed application able the calculation of turbojet performances to different altitudes in order to find a point of optimal use making possible to maintain the turbine blades at an acceptable maximum temperature and to limit the local variations in temperatures in order to guarantee their integrity during all the lifespan of the engine.

Operation Parameters of Vacuum Cleaned Filters

For vacuum cleaned dust filters there exist no calculation methods to determine design parameters (e.g. traverse velocity of the nozzle, filter area…). In this work a method to calculate the optimum traverse velocity of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions. A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.

Initiative Strategies on How to Increasing Value Add of the Recycling Business

The current study was the succession of a previous study on value added of recycling business management. Its aims are to 1) explore conditions on how to increasing value add of Thai recycling business, and 2) exam the implementation of the 3-staged plan (short, medium, and long term), suggested by the former study, to increase value added of the recycling business as immediate mechanisms to accelerate government operation. Quantitative and qualitative methods were utilized in this research. A qualitative research consisted of in-depth interviews and focus group discussions. Responses were obtained from owners of the waste separation plants, and recycle shops, as well as officers in relevant governmental agencies. They were randomly selected via Quota Sampling. Data was analyzed via content analysis. The sample used for quantitative method consisted of 1,274 licensed recycling operators in eight provinces. The operators were randomly stratified via sampling method. Data were analyzed via descriptive statistics frequency, percentage, average (Mean) and standard deviation.The study recommended three-staged plan: short, medium, and long terms. The plan included the development of logistics, the provision of quality market/plants, the amendment of recycling rules/regulation, the restructuring recycling business, the establishment of green-purchasing recycling center, support for the campaigns run by the International Green Purchasing Network (IGPN), conferences/workshops as a public forum to share insights among experts/concern people.

A Weighted Approach to Unconstrained Iris Recognition

This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.

Automatic Generating CNC-Code for Milling Machine

G-code is the main factor in computer numerical control (CNC) machine for controlling the toolpaths and generating the profile of the object’s features. For obtaining high surface accuracy of the surface finish, non-stop operation is required for CNC machine. Recently, to design a new product, the strategy that concerns about a change that has low impact on business and does not consume lot of resources has been introduced. Cost and time for designing minor changes can be reduced since the traditional geometric details of the existing models are applied. In order to support this strategy as the alternative channel for machining operation, this research proposes the automatic generating codes for CNC milling operation. Using this technique can assist the manufacturer to easily change the size and the geometric shape of the product during the operation where the time spent for setting up or processing the machine are reduced. The algorithm implemented on MATLAB platform is developed by analyzing and evaluating the geometric information of the part. Codes are created rapidly to control the operations of the machine. Comparing to the codes obtained from CAM, this developed algorithm can shortly generate and simulate the cutting profile of the part.