Fuzzy Power Controller Design for Purdue University Research Reactor-1

The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.

Multi-Criteria Nautical Ports Capacity and Services Planning

This paper is a result of implemented research on proposed introduced methodology for nautical ports capacity planning by introducing a multi-criteria approach of defined criteria in the Adriatic Sea region. The purpose was analyzing the determinants - characteristics of infrastructure and services of nautical ports capacity allocated, especially nowadays due to COVID-19 pandemic, as crucial for successful operation of nautical ports. Giving the importance of the defined priorities for short-term and long-term planning is essential not only in terms of the development of nautical tourism, but also in terms of developing the maritime system, but unfortunately this is not always carried out. Evaluation of the use of resources should follow from a detailed analysis of all aspects of resources bearing in mind that nautical tourism used resources in a sustainable manner and generates effects in the tourism and maritime sectors. Consequently, identified multiplier effect of nautical tourism, which should be defined and quantified in detail, should be one of the major competitive products on the Croatian Adriatic and the Mediterranean. Research of nautical tourism is necessary to quantify the effects and required planning system development. In the future, the greatest threat to long-term sustainable development of nautical tourism can be its further uncontrolled or unlimited and undirected development, especially under pressure markedly higher demand than supply for new moorings in the Mediterranean. Results of this implemented research are applicable to nautical ports management and decision makers of maritime transport system development. This paper will present implemented research and obtained result - developed methodology for nautical port capacity planning - Port Capacity Planning Multi-criteria decision-making. A proposed methodological approach of multi-criteria capacity planning includes four criteria (spatial - transport, cost - infrastructure, ecological and organizational criteria, and additional services). The importance of the criteria and sub-criteria is evaluated and carried out the basis for a sensitivity analysis of the importance of the criteria and sub-criteria. Based on the analysis of the identified and quantified importance of certain criteria and sub-criteria as well as sensitivity analysis and analysis of changes of the quantified importance scientific and applicable results will be presented. These obtained results have practical applicability by management of nautical ports in the planning of increasing capacity and further development and for the adaptation of existing nautical ports. The obtained research is applicable and replicable in other seas and results are especially important and useful in this COVID-19 pandemic challenging maritime development framework.

Libretto Thematology in Rossini's Operas and Its Formation by the Composer

The present study examines the way Gioachino Rossini’s librettos are selected and formed demonstrating the evolutionary trajectory of the composer during his operatic career. Rossini, a dominant figure in the early 19th century Italian opera, is demanding in his choice of librettos and has a preference for subjects inspired by European literature, of his time or earlier. He begins his operatic career with farsae and operas buffae, but he mainly continues with operas seriae, to end it with a grand opera that conforms to the spirit of romanticism as manifested in Paris of his time. His farsae, operas buffae and comic operas in general are representative of the trends of the time: in some the irrational and the exaggeration prevail, in others the upheavals, others are semi-serious and emotional with a happy ending and others are comedies with more realistic characters, but usually the styles are mixed and complement each other. The stories that refer to his modern era unfold mocking human characters, beliefs attitudes and their expressions in every day habits, satirizing current affairs, presenting innovative elements in dramatic intervention and dealing with a variety of social and national issues. Count Ory, his final comic work, consists of a complex witty urban comic opera entwined with romantic sensitivity. The themes he chooses for his operas seriae are characterized by tragic passion, take place in the era of the Trojan War, the Roman Empire, the Middle Ages, and the Age of the Crusades and are set in Italy, England, Poland, Greece, Switzerland, Israel and Egypt. In his early works he sketches the characters remotely, objectively and with static, reflexive emotional expression and a happy ending. Then he continues with operas for the San Carlo Theater, which are characterized by experimentation and innovation to end up his Italian operatic career with the ostensibly backward but in fact tragic Semiramis followed in Paris by William Tell, his ultimate dramatic achievement. There are indirect references to burning issues of his era but the censorship of the time does not allow direct reference to topics that would upset the status quo. In addition, Rossini lives in a temporal period of peace after the Napoleonic Wars and by temperament he resists openly engaging in political strife. Furthermore, the need for survival necessitates the search for the more profitable contracts. In conclusion, Rossini, as a liberal personality, shapes his librettos without interruptions or setbacks, with ideas that come out after a lot of thought and a strong sense of purpose. He moves from the moral and aesthetic clarity of the classic tradition of his early works to a more elaborate and morally ambiguous romantic style in a moderate and hesitant way.

Effects of Channel Bed Slope on Energy Dissipation of Different Types of Piano Key Weir

The present investigation aims to study the effect of channel bed slopes on energy dissipation across the different types of Piano Key Weir (PK weir or PKW) under the free-flow conditions in rigid rectangular channels. To this end, three different types (type-A, type-B, and type-C) of PKW models were tested and examined. To document and quantify this experimental investigation, a total of 270 tests were performed, including detailed observations of the flow field. The results show that the energy dissipation of all PKW models increases with the bed slopes and decreases with increasing the discharge over the weirs. In addition, the energy dissipation over the PKW varies significantly with the geometry of the weir. The type-A PKW has shown the highest energy dissipation than the other PKWs. As the bottom slope changed from Sb = 0% to 1.25%, the energy dissipation increased by about 8.5%, 9.1%, and 10.55% for type-A, type-B, and type-C, respectively.

Mobile Robot Control by Von Neumann Computer

The digital control system of mobile robots (MR) control is considered. It is shown that sequential interpretation of control algorithm operators, unfolding in physical time, suggests the occurrence of time delays between inputting data from sensors and outputting data to actuators. Another destabilizing control factor is presence of backlash in the joints of an actuator with an executive unit. Complex model of control system, which takes into account the dynamics of the MR, the dynamics of the digital controller and backlash in actuators, is worked out. The digital controller model is divided into two parts: the first part describes the control law embedded in the controller in the form of a control program that realizes a polling procedure when organizing transactions to sensors and actuators. The second part of the model describes the time delays that occur in the Von Neumann-type controller when processing data. To estimate time intervals, the algorithm is represented in the form of an ergodic semi-Markov process. For an ergodic semi-Markov process of common form, a method is proposed for estimation a wandering time from one arbitrary state to another arbitrary state. Example shows how the backlash and time delays affect the quality characteristics of the MR control system functioning.

Spatial Correlation of Channel State Information in Real LoRa Measurement

The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially LoRaWAN. In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated with each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems to get access to a wider band.

Rehabilitation of Contaminated Surface and Groundwater for Selected Sites in the Illawarra and Sydney Regions Utilising Nanotechnology

A comprehensive study was conducted to examine the removal of inorganic contaminants that exist in surface and groundwater in the Illawarra and Sydney regions. The ability of multi-walled carbon nanotubes (MWCNT), as a generation of membrane technology, was examined using a dead-end filtration cell setup. A set of ten compounds were examined in this study that represent the significant inorganic cations and anions commonly found in contaminated surface and groundwater. The performance of MWCNT buckypaper membranes in excluding anions was found to be better than that of its cation exclusion. This phenomenon can be attributed to the Donnan exclusion mechanism (charge repulsion mechanism). Furthermore, the results revealed that phosphate recorded the highest exclusion value reaching 69.2%, whereas the lowest rejection value was for potassium where no removal occurred (0%). The reason for this is that the molecular weight of phosphate (95.0 g/mol) is greater than the molecular weight of potassium (39.10 g/mol).

Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland

Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found  that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.

Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

In low permeability reservoirs, the reservoir pore throat is small and the micro heterogeneity is prominent. Conventional microsphere profile control agents generally have good injectability but poor plugging effect; however, profile control agents with good plugging effect generally have poor injectability, which makes it difficult for agent to realize deep profile control of reservoir. To solve this problem, styrene and acrylamide were used as monomers in the laboratory. Emulsion polymerization was used to prepare the Controllable Self-Aggregating Colloidal Particle (CSA), which was rich in amide group. The CSA microsphere dispersion solution with a particle diameter smaller than the pore throat diameter was injected into the reservoir to ensure that the profile control agent had good inject ability. After dispersing the CSA microsphere to the deep part of the reservoir, the CSA microspheres dispersed in static for a certain period of time will self-aggregate into large-sized particle clusters to achieve plugging of hypertonic channels. The CSA microsphere has the characteristics of low expansion and avoids shear fracture in the process of migration. It can be observed by transmission electron microscope that CSA microspheres still maintain regular and uniform spherical and core-shell heterogeneous structure after aging at 100 ºC for 35 days, and CSA microspheres have good thermal stability. The results of bottle test showed that with the increase of cation concentration, the aggregation time of CSA microspheres gradually shortened, and the influence of divalent cations was greater than that of monovalent ions. Physical simulation experiments show that CSA microspheres have good injectability, and the aggregated CSA particle clusters can produce effective plugging and migrate to the deep part of the reservoir for profile control.

Extracting Attributes for Twitter Hashtag Communities

Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.

Biomarkers in a Post-Stroke Population: Allied to Health Care in Brazil

Stroke affects not only the individual, but has significant impacts on the social and family context. Therefore, it is necessary to know the peculiarities of each region, in order to contribute to regional public health policies effectively. Thus, the present study discusses biomarkers in a post-stroke population, admitted to a stroke unit (U-stroke) of reference in the southern region of Brazil. Biomarkers were analyzed, such as age, length of stay, mortality rate, survival time, risk factors and family history of stroke in patients after ischemic stroke. In this studied population, comparing men and women, it was identified that men were more affected than women, and the average age of women affected was higher, as they also had the highest mortality rate and the shortest hospital stay. The risk factors identified here were according to the global scenario; with systemic arterial hypertension (SAH) being the most frequent and those associated with sedentary lifestyle in women the most frequent (dyslipidemia, heart disease and obesity). In view of this, the importance of studies that characterize populations regionally is evident, strengthening the strategic planning of policies in favor of health care.

Synthesis of a Control System of a Deterministic Chaotic Process in the Class of Two-Parameter Structurally Stable Mappings

In this paper, the problem of unstable and deterministic chaotic processes in control systems is considered. The synthesis of a control system in the class of two-parameter structurally stable mappings is demonstrated. This is realized via the gradient-velocity method of Lyapunov vector functions. It is shown that the gradient-velocity method of Lyapunov vector functions allows generating an aperiodic robust stable system with the desired characteristics. A simple solution to the problem of synthesis of control systems for unstable and deterministic chaotic processes is obtained. Moreover, it is applicable for complex systems.

Indian Women’s Inner -World and Female Protest in Githa Hariharan’s Novel ‘The Thousand Faces of Night’

Gender statuses are inherently unequal; it is difficult to establish equality between men and women in the light of traditional inequalities across the world. This research focuses on the similarities and differences among women from different generations, different kinds of educational backgrounds and highlights the conflict experiences of the characters in Githa Hariharan’s novel “The Thousand Faces of Night”. The purpose is to show how women are suffering and are being humiliated in a male-dominated society. The paper depicts how women in India grapple from male domination aggressiveness as well as the cultural, social and religious controlling in the society they live in. The paper also seeks to explore the importance of knowledge as a powerful component which produces positive effects at the level of desire. The paper is based on the theories of Simone Beauvoir, Pierre Bourdieu, Edward Said, Rene Descartes and Amy Bhatt. Finally, the research emphasizes survival against hegemonic regimes and hope of Indian women for better life.

Knowledge, Attitude and Practice of Pregnant Women toward Antenatal Care at Public Hospitals in Sana'a City-Yemen

Background: Antenatal care can be defined as the care provided by skilled healthcare professionals to pregnant women and adolescent girls to ensure the best health conditions for both mother and baby during pregnancy. The components of Antenatal Care (ANC) include risk identification; prevention and management of pregnancy-related or concurrent diseases; and health education and health promotion. The aim of this study: to assess the knowledge, attitude, and practice of pregnant women regarding ANC. Methodology: A descriptive knowledge, attitude, and practice (KAP) study was conducted in public hospitals in Sana'a City, Yemen. The study population included all pregnant women that intended to the prenatal department and clinical outpatient department; the final sample size was 371 pregnant women. A self-administered questionnaire was used to collect the data, statistical package for social sciences SPSS was used to data analysis. The results: Most (79%) of pregnant women had correct answers in total knowledge regarding ANC, and about two-thirds (67%) of pregnant women had performance practice regarding ANC and two-third (68%) of pregnant women had a positive attitude. Conclusions: More than three quarter of pregnant women had good knowledge level, most of pregnant women had moderate practice level, and more than two-thirds of pregnant women had a positive attitude regarding antenatal care. There was a statistically significant association between overall knowledge and practice level toward ANC and demographic characteristics of pregnant women, at P-value ≤ 0.05. Recommendations: we recommended more education and training courses, lecturers, and education sessions in clinical facilitators focused on ANC, which relies on evidence-based interventions provided to women during pregnancy by skilled healthcare providers such as midwives, doctors, and nurses.

Aircraft Selection Problem Using Decision Uncertainty Distance in Fuzzy Multiple Criteria Decision Making Analysis

Aircraft have different capabilities and specifications according to the required strategic goals and objectives in operations. With various types on the market with different aircraft characteristics, it becomes difficult to select a suitable aircraft for certain operations and requirements. The entropy weighting method (EWM) is a useful, highly consistent, and reliable method for obtaining the weights of the criteria and is worth integrating with the decision uncertainty distance (DUD) method, which is more applicable and requires less computation than other methods. An illustrative example is presented to demonstrate the validity and usability of the proposed methodology. Comparing the ranking results matches the distance-based approach, which is the technique for order preference by similarity to ideal solution (TOPSIS) method, which shows the robustness of the entropy DUD hybrid method. Validity analysis shows that the proposed hybrid multiple criteria decision-making analysis (MCDMA) methodology is quantitatively stable and reliable.

Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Effects of Asphalt Modification with Nanomaterials on Fresh and Stored Bitumen

Nanomaterials have many applications in the field of asphalt paving. Two locally produced nanomaterials were used in the asphalt binder modification. The nanomaterials used are Nanosilica (NS), and Nanoclay (NC). The virgin asphalt binder was characterized by the conventional tests. The bitumen was modified by 3%, 5% and 7% of NS and NC. The penetration index (PI), and the retaining penetration (RP) was calculated based on the results of the penetration and the softening point tests. The results show that the RP becomes 95.35% at 5% NS modified bitumen and reaches 97.56% when bitumen is modified with 3% NC. The results show significant improvement in the bitumen stiffness when modified by the two types of nanomaterials, either fresh or aged (stored).

A Procedure to Assess Streamflow Rating Curves and Streamflow Sequences

This study aims to provide sub-hourly streamflow predictions and associated rating curves for small catchments of intermittent and torrential flow regime characterized by flash floods occurring especially during April and November. The methodology entails two lumped conceptual hydrological models which work in series. The total model is based upon eleven parameters and shows good flexibility in handling different input sets. Runoff Coefficient has contributed to improving the model’s performances and has been treated as an additional parameter; while Sensitivity Analysis has highlighted how slight changes in the model’s input can lead to changes in model’s output. The adopted procedure is steady and useful to give very practical engineering information at the expense of a parsimonious request both in input data and in the number of adopted parameters. According to the obtained results, the authors encourage the test of this combined procedure on different hydrological scenarios in order to provide information for poorly monitored catchments and not updated sites.

A Mixed Method Study Investigating Dyslexia and Students’ Experiences of Anxiety and Coping

Adult students with dyslexia can receive support for cognitive needs but may also experience anxiety, which is less understood. This study aims to test the hypothesis that dyslexic learners in higher education have a higher prevalence of academic and social anxiety than their non-dyslexic peers and explores wider emotional consequences of studying with dyslexia and the ways that adults with dyslexia cope cognitively and emotionally. A mixed method approach was used in two stages. Stage one compared survey responses from students with dyslexia (N = 102) and students without dyslexia (N = 72) after completion of an anxiety inventory. Stage two explored emotional consequences of studying with dyslexia and types of coping strategies used through semi-structured interviews with 20 dyslexic students. Results revealed a statistically significant effect for academic anxiety but not for social anxiety. Findings for stage two showed that: (1) students’ emotional consequences were characterised by a mixture of negative and positive responses, yet negative responses were more frequent in response to questions about academic tasks than positive responses; (2) participants had less to say on coping emotionally, than coping cognitively.

Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.