Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX

Different order modulations combined with different coding schemes, allow sending more bits per symbol, thus achieving higher throughputs and better spectral efficiencies. However, it must also be noted that when using a modulation technique such as 64- QAM with less overhead bits, better signal-to-noise ratios (SNRs) are needed to overcome any Inter symbol Interference (ISI) and maintain a certain bit error ratio (BER). The use of adaptive modulation allows wireless technologies to yielding higher throughputs while also covering long distances. The aim of this paper is to implement an Adaptive Modulation and Coding (AMC) features of the WiMAX PHY in MATLAB and to analyze the performance of the system in different channel conditions (AWGN, Rayleigh and Rician fading channel) with channel estimation and blind equalization. Simulation results have demonstrated that the increment in modulation order causes to increment in throughput and BER values. These results derived a trade-off among modulation order, FFT length, throughput, BER value and spectral efficiency. The BER changes gradually for AWGN channel and arbitrarily for Rayleigh and Rician fade channels.

BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio

Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it's a lot of generic as receivers doesn't would like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.

Spectral Broadening in an InGaAsP Optical Waveguide with χ(3) Nonlinearity Including Two Photon Absorption

We have studied a method to widen the spectrum of optical pulses that pass through an InGaAsP waveguide for application to broadband optical communication. In particular, we have investigated the competitive effect between spectral broadening arising from nonlinear refraction (optical Kerr effect) and shrinking due to two photon absorption in the InGaAsP waveguide with χ(3) nonlinearity. The shrunk spectrum recovers broadening by the enhancement effect of the nonlinear refractive index near the bandgap of InGaAsP with a bandgap wavelength of 1490 nm. The broadened spectral width at around 1525 nm (196.7 THz) becomes 10.7 times wider than that at around 1560 nm (192.3 THz) without the enhancement effect, where amplified optical pulses with a pulse width of ∼ 2 ps and a peak power of 10 W propagate through a 1-cm-long InGaAsP waveguide with a cross-section of 4 (μm)2.

Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images

A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.

A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based On WorldView-2 Satellite Imagery

In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of WorldView-2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows with accuracy of 94% effectively and automatically. Furthermore, the new shadow detection index improved road extraction from 82% to 93%.

Significant Role Analysis of Transmission Control Protocols in 4G Cellular Systems

The society of 3rd Generation Partnership Project (3GPP) is completed developing Long Term Evolution Advanced (LTE-Advanced) systems as a standard 4G cellular system. This generation goals to produce conditions for a new radio-access technology geared to higher data rates, low latency, and better spectral efficiency. LTE-Advanced is an evolutionary step in the continuing development of LTE where the description in this article is based on LTE release 10. This paper provides a model of the traffic links of 4G system represented by LTE-Advanced system with the effect of the Transmission Control Protocols (TCP) and Stream Control Transmission Protocol (SCTP) in term of throughput and packet loss. Furthermore, the article presents the investigation and the analysis the behavior of SCTP and TCP variants over the 4G cellular systems. The traffic model and the scenario of the simulation developed using the network simulator NS-2 using different TCP source variants.

Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique

In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.

Metal-Based Anticancer Agents: In vitro DNA Binding, Cleavage and Cytotoxicity

Two new metal-based anticancer chemotherapeutic agents, [(Ph2Sn)2(HGuO)2(phen)Cl2] 1 and [(Ph3Sn)(HGuO)(phen)]- Cl.CH3OH.H2O 2, were designed, prepared and characterized by analytical and spectral (IR, ESI-Mass, 1H, 13C and 119Sn NMR) techniques. The proposed geometry of Sn(IV) in 1 and 2 is distorted octahedral and distorted trigonal-bipyramidal, respectively. Both 1 and 2 exhibit potential cytotoxicity in vitro against MCF-7, HepG-2 and DU-145 cell lines. The intrinsic binding constant (Kb) values of 1 (2.33 × 105 M-1) and 2 (2.46 × 105 M-1) evaluated from UV-Visible absorption studies suggest non-classical electrostatic mode of interaction via phosphate backbone of DNA double helix. The Stern- Volmer quenching constant (Ksv) of 1 (9.74 × 105 M-1) and 2 (2.9 × 106 M-1) determined by fluorescence studies suggests the groove binding and intercalation mode for 1 and 2, respectively. Effective cleavage of pBR322 DNA is induced by 1.Their interaction with DNA of cancer cells may account for potency.

Angle of Arrival Detection with Fifth Order Phase Operators

In this paper, a fifth order propagator operators are proposed for estimating the Angles Of Arrival (AOA) of narrowband electromagnetic waves impinging on antenna array when its number of sensors is larger than the number of radiating sources. The array response matrix is partitioned into five linearly dependent phases to construct the noise projector using five different propagators from non diagonal blocks of the spectral matrice of the received data; hence, five different estimators are proposed to estimate the angles of the sources. The simulation results proved the performance of the proposed estimators in the presence of white noise comparatively to high resolution eigen based spectra.

Angles of Arrival Estimation with Unitary Partial Propagator

In this paper, we investigated the effect of real valued transformation of the spectral matrix of the received data for Angles Of Arrival estimation problem.  Indeed, the unitary transformation of Partial Propagator (UPP) for narrowband sources is proposed and applied on Uniform Linear Array (ULA). Monte Carlo simulations proved the performance of the UPP spectrum comparatively with Forward Backward Partial Propagator (FBPP) and Unitary Propagator (UP). The results demonstrates that when some of the sources are fully correlated and closer than the Rayleigh angular limit resolution of the broadside array, the UPP method outperforms the FBPP in both of spatial resolution and complexity.

Design of an Efficient Retimed CIC Compensation Filter

Unwanted side effects because of spectral aliasing and spectral imaging during signal processing would be the major concern over the sampling rate alteration. Multirate-multistage implementation of digital filter could come about a large computational saving than single rate filter suitable for sample rate conversion. This implementation can further improve through high-level architectural transformation in circuit level. Reallocating registers and  relocating flip-flops across logic gates through retiming certainly a prominent sequential transformation technology, that optimize hardware circuits to achieve faster clocking speed without affecting the functionality. In this paper, we proposed an efficient compensated cascade Integrator comb (CIC) decimation filter structure that analyze the consequence of filter order variation which has a retimed FIR filter being compensator while using the cutset retiming technique and achieved an improvement in the passband droop by 14% to 39%, in computation time by 38.04%, 25.78%, 12.21%, 6.69% and 4.44% and reduction in path delay by 62.27%, 72%, 86.63%, 91.56% and 94.42% of 3, 6, 8, 12 and 24 order filter respectively than the non-retimed CIC compensation filter.

Estimating 3D-Position of A Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

A Comparative Study on Seismic Provisions Made in UBC-1997 and Saudi Building Code for RC Buildings

This paper presents a comparative study of static analysis procedure for seismic performance based on UBC-1997 and SBC-301-2007(Saudi Arabia). These building codes define different ductility classes and corresponding response reduction factors based on material, configuration and detailing of reinforcements. Codes differ significantly in specifying the procedures to estimate base shear, drift and effective stiffness of structural members. One of the major improvements made in new SBC (based on IBC-2003) is ground motion parameters used for seismic design. In old SBC (based on UBC) maps have been based on seismic zones. However new SBC provide contour maps giving spectral response quantities. In this approach, a case study of RC frame building located in two different cities and with different ductility classes has been performed. Moreover, equivalent static method based on SBC-301 and UBC-1997 is used to explore the variation in results based on two codes, particularly design base shear, lateral loads and story drifts.

Phenotypical and Genotypical Assessment Techniques for Identification of Some Contagious Mastitis Pathogens

Mastitis is one of the most economic disease affecting dairy cows worldwide. Its classic diagnosis using bacterial culture and biochemical findings is a difficult and prolonged method. In this research, using of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) permitted identification of different microorganisms with high accuracy and rapidity (only 24 hours for microbial growth and analysis). During the application of MALDI-TOF MS, one hundred twenty strains of Staphylococcus and Streptococcus species isolated from milk of cows affected by clinical and subclinical mastitis were identified, and the results were compared with those obtained by traditional methods as API and VITEK 2 Systems. 37 of totality 39 strains (~95%) of Staphylococcus aureus (S. aureus) were exactly detected by MALDI TOF MS and then confirmed by a nuc-based PCR technique, whereas accurate identification was observed in 100% (50 isolates) of the coagulase negative staphylococci (CNS) and Streptococcus agalactiae (31 isolates). In brief, our results demonstrated that MALDI-TOF MS is a fast and truthful technique which has the capability to replace conventional identification of several bacterial strains usually isolated in clinical laboratories of microbiology.

Transesterification of Jojoba Oil-Wax Using Microwave Technique

Jojoba oil-wax is extracted from the seeds of the jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi desert areas in Egypt and in some parts of the world. The main uses of jojoba oil-wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the jojoba oil-wax to biodiesel by transesterification with ethanol and a series of aliphatic alcohols using a more economic and energy saving method in a domestic microwave. The effect of time and power of the microwave on the extent of the transesterification using ethanol and other aliphatic alcohols has been studied. The separation of the alkyl esters from the fatty alcohols rich fraction has been done in a single crystallization step at low temperature (−18°C) from low boiling point petroleum ether. Gas chromatography has been used to follow up the transesterification process. All products have been characterized by spectral analysis.

Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control

Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.

Some Results on Preconditioned Modified Accelerated Overrelaxation Method

In this paper, we present new preconditioned modified accelerated overrelaxation (MAOR) method for solving linear systems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned MAOR method converges faster than the MAOR method whenever the MAOR method is convergent. Finally, we give one numerical example to confirm our theoretical results.

Some Results on New Preconditioned Generalized Mixed-Type Splitting Iterative Methods

In this paper, we present new preconditioned generalized mixed-type splitting (GMTS) methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GMTS methods converge faster than the GMTS method whenever the GMTS method is convergent. Finally, we give a numerical example to confirm our theoretical results.

Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern

This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analyzed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).