Abstract: An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA+) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software.
Abstract: Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+
Abstract: In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.
Abstract: CTMA-bentonite and BTEA-Bentonite prepared by Na-bentonite cation exchanged with cetyltrimethylammonium(CTMA) and benzyltriethylammonium (BTEA). Products were characterized by XRD and IR techniques.The d001 spacing value of CTMA-bentonite and BTEA-bentonite are 7.54Å and 3.50Å larger than that of Na-bentonite at 100% cation exchange capacity, respectively. The IR spectrum showed that the intensities of OH stretching and bending vibrations of the two organoclays decreased greatly comparing to untreated Na-bentonite. Batch experiments were carried out at 303 K, 318 K and 333 K to obtain the sorption isotherms of Crystal violet onto the two organoclays. The results show that the sorption isothermal data could be well described by Freundlich model. The dynamical data for the two organoclays fit well with pseudo-second-order kinetic model. The adsorption capacity of CTMA-bentonite was found higher than that of BTEA-Bentonite. Thermodynamic parameters such as changes in the free energy (ΔG°), the enthalpy (ΔH°) and the entropy (ΔS°) were also evaluated. The overall adsorption process of Crystal violet onto the two organoclays were spontaneous, endothermic physisorption. The CTMA-bentonite and BTEA-Bentonite could be employed as low-cost alternatives to activated carbon in wastewater treatment for the removal of color which comes from textile dyes.
Abstract: In this research work, poly (acrylonitrile-butadienestyrene)/
polypropylene (ABS/PP) blends were processed by melt
compounding in a twin-screw extruder. Upgrading of the thermal
characteristics of the obtained materials was attempted by the
incorporation of organically modified montmorillonite (OMMT), as
well as, by the addition of two types of compatibilizers;
polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS
grafted with maleic anhydride (ABS-g-MAH). The effect of the
above treatments was investigated separately and in combination.
Increasing the PP content in ABS matrix seems to increase the
thermal stability of their blend and the glass transition temperature
(Tg) of SAN phase of ABS. From the other part, the addition of ABS
to PP promotes the formation of its β-phase, which is maximum at 30
wt% ABS concentration, and increases the crystallization temperature
(Tc) of PP. In addition, it increases the crystallization rate of PP.The
β-phase of PP in ABS/PP blends is reduced by the addition of
compatibilizers or/and organoclay reinforcement. The incorporation
of compatibilizers increases the thermal stability of PP and reduces
its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it
decreases slightly the Tgs of PP and SAN phases of ABS/PP blends.
Regarding the storage modulus of the ABS/PP blends, it presents a
change in their behavior at about 10°C and return to their initial
behavior at ~110°C. The incorporation of OMMT to no compatibilized
and compatibilized ABS/PP blends enhances their storage modulus.
Abstract: Polyurethanes (PURs) are very versatile polymeric
materials with a wide range of physical and chemical properties.
PURs have desirable properties such as high abrasion resistance, tear
strength, shock absorption, flexibility and elasticity. Although they
have relatively poor thermal stability, this can be improved by using
treated clay. Polyurethane/clay nanocomposites have been
synthesized from renewable sources. A polyol for the production of
polyurethane by reaction with an isocyanate was obtained by the
synthesis of palm oil-based oleic acid with glycerol. Dodecylbenzene
sulfonic acid (DBSA) was used as catalyst and emulsifier. The
unmodified clay (kunipia-F) was treated with cetyltrimethyl
ammonium bromide (CTAB-mont) and octadodecylamine (ODAmont).
The d-spacing in CTAB-mont and ODA-mont were 1.571 nm
and 1.798 nm respectively and larger than that of the pure-mont
(1.142 nm). The organoclay was completely intercalated in the
polyurethane, as confirmed by a wide angle x-ray diffraction
(WAXD) pattern.
The results showed that adding clay demonstrated better thermal
stability in comparison with the virgin polyurethane. Onset
degradation of pure PU is at 200oC, and is lower than that of the
CTAB-mont PU and ODA-mont PU which takes place at about
318oC and 330oC, respectively. The mechanical properties (including
the dynamic mechanical properties) of pure polyurethane (PU) and
PU/clay nanocomposites, were measured. The modified organoclay
had a remarkably beneficial effect on the strength and elongation at
break of the nanocomposites, which both increased with increasing
clay content with the increase of the tensile strength of more than
214% and 267% by the addition of only 5 wt% of the
montmorillonite CTAB-mont PU and ODA-mont PU, respectively.
Abstract: Contamination of aromatic compounds in water can
cause severe long-lasting effects not only for biotic organism but also
on human health. Several alternative technologies for remediation of
polluted water have been attempted. One of these is adsorption
process of aromatic compounds by using organic modified clay
mineral. Porous structure of clay is potential properties for molecular
adsorptivity and it can be increased by immobilizing hydrophobic
structure to attract organic compounds. In this work natural
montmorillonite were modified with cetyltrimethylammonium
(CTMA+) and was evaluated for use as adsorbents of aromatic
compounds: benzene, toluene, and 2-chloro phenol in its single and
multicomponent solution by ethanol:water solvent. Preparation of
CTMA-montmorillonite was conducted by simple ion exchange
procedure and characterization was conducted by using x-day
diffraction (XRD), Fourier-transform infra red (FTIR) and gas
sorption analysis. The influence of structural modification of
montmorillonite on its adsorption capacity and adsorption affinity of
organic compound were studied. It was shown that adsorptivity of
montmorillonite was increased by modification associated with
arrangements of CTMA+ in the structure even the specific surface
area of modified montmorillonite was lower than raw
montmorillonite. Adsorption rate indicated that material has affinity
to adsorb compound by following order: benzene> toluene > 2-chloro
phenol. The adsorption isotherms of benzene and toluene showed 1st
order adsorption kinetic indicating a partition phenomenon of
compounds between the aqueous and organophilic CTMAmontmorillonite.