Influence of Organic Modifier Loading on Particle Dispersion of Biodegradable Polycaprolactone/Montmorillonite Nanocomposites

Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+σ obtained from the dependency of σ on temperature using Arrhenius equation was found to be lowest for the nanocomposite containing 5 wt% of Cloisite 15A. The dispersed behavior of clay in PCL matrix was evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses which revealed partial intercalated structures in PCL/NaMMT composites and semi-intercalated/semi-exfoliated structures in PCL/OMMT nanocomposites containing 5 wt% of Cloisite 20A or Cloisite 15A.




References:
[1] R. Rothon, Particulate-Filled Polymer Composites, 1st ed. Longman Scientific: Harlow UK, 1995.
[2] S. J. Ahmadi; Y.D. Huang; W. Li, J Mater Sci 2004, 39, 1919-1925.
[3] Y. Fukushima; S. J. Inagaki, Inclusion Phenomena 1987, 5, 473.
[4] A. Okada; M. Kawasumi; T. Kurauchi; O. Kamigaito, Polym. Preparation 1987, 28, 447.
[5] Z. Sedlakova; J. Plestil; J. Baldrian,; M. Slouf,; P. Halub, Polym Bull 2009, 63; 365- 384.
[6] I. Turku and T. Karki, Journal of Thermoplastic Composite Materials 2014, 27(2) 180–204.
[7] T. J. Pinnavaia; G.W. Beal, Polymer-Clay Nanocomposites; Wiley, 2000.
[8] Y. Xi; Z. Ding; H. He; R.L. Frost, Colloid Interface Sci 2004, 277, 116-120.
[9] Y. Hu; L. Song; J. Xu; L.Yang; Z. Chen; W. Fan, Colloid Polym Sci 2001, 279, 819-822.
[10] R. K. Bharadwaj, Macromolecules 2001, 34, 9189.
[11] G. Beyer, Fire Mater 2001, 25, 193.
[12] L. Berlund, Fillers and Additives for Plastics 2000, 4,31.
[13] A. Leykin; M. Loelovich; O. Figovsky, Polymer composites Eurofillers 2003 International Conference, Alicante (SPAIN) September 2003, 8-11, P363-364.
[14] J.W. CHo; D.R. Paul, Polymer 2001, 42, 1083.
[15] I. J. Chin; T.T. Albrecht; H.C. Kim; T.P. Russell; J. Wang, Polymer 2001, 42, 5947.
[16] S. Wang; C. Long; X. Wang; Q. Li; Z. Qi, J Appl Polym Sci 1998, 69, 1557.
[17] E. Manias; A. Touny; L. Wu; K. Strawhecker; B. Lu; T.C. Chung, Chem Mater 2001, 13, 3516.
[18] C. Zhao; H. Qin; F.Gong; M. Feng, S. Zhang; M. Yang, Polym Degrad Stab 2005, 87, 183-189.
[19] E. P. Glanellis, Adv Mater 1996, 8, 29-35.
[20] G. Jimenes; N. Ogata; H. Kawai; T. Ogihara, J Appl Polym Sci 1997, 64, 2211.
[21] H. L. Tyan; C. M. Leu; K. H. Wei, Chem Mater 2001, 13, 222.
[22] Y. I. Tien.; K. H. Wei, Polymer 2001, 42, 3213.
[23] T. Peprnicek; J. Duchet; L. Kovarova; J. Malac; J. F. Gerard; J. Simonik, Polym Degrad Stab 2006, 91, 1855.
[24] X. Fu; S. Qutubuddin, Polymer 2001, 42, 807-813.
[25] Y. Li; B. Zhao; S. Xie; S. Zhang, Polym Int 2003, 52, 892.
[26] P. Uthirakumar; K.S. Nahm; Y. B. Hahn; Y.S. Lee, European Polymer J 2004, 40, 2437-2444.
[27] C. Zeng; L. Lee, J. Macromolecules 2001, 34, 4098.
[28] I Engelberg and J. Kohn, Biomaterials 1992,12,292.
[29] H. Tsuji, T. Ishizaka, Macromolecular Bioscience 2001, 1 (2), 59-65.
[30] C. De Kesel; C. Vander Wauven; C. David, Poly Degrad Stab 1997, 55 (1), 107-113.
[31] U. S Ishiaku; K.W. Pang; W. S. Lee; Z. A. Mohd Ishak, European Polymer 2002, 38 (2), 393-401.
[32] R.W. Rees, Encyclopedia Polym Sci Eng, 1985, p. 395. J.E. Mark John Wiley and Sons NY.
[33] R.P. Singha; J.K. Pandey; D. Rutot; P. Degée; P. Dubois, Carbohyd Res 2003,338, 1759–1769.
[34] Q.H. Zeng; A.B. Yu; G.Q. Lu; D.R. Paul, J Nanosci Nanotechnol 2005, (5) 1574–1592.
[35] B. Lepoittevin; M. Devalckenaere; N. Pantoustier; M. Alexandre; D. Kubies; C. Calberg, Polymer 2002,43, 4017–4023.
[36] Y. Di; S. Iannace; E.D. Maio; L. Nicolais, J Polym Sci Part B Polym Phys 2003,41, 670–678.
[37] M.A. Paul; M. Alexandre; P. Degee; C. Henrist; A. Rulmont; P. Dubois, Polymer 2003, 44, 443–450.
[38] R. C. Mackenzie, The Differential Thermal Investigation of Clays; Mineralogy Society: London, 1957.
[39] L. M. Stadtmueller; K. R Ratinac; S. P. Ringer, Polymer 2005, 46, 9574-9584.
[40] J. Zheng; R. Ozisik; R.W. Siegel, Polymer 2006, 47, 7792, 7793.
[41] G. Sivalingam; G. Madras, Polym Degrad Stab 2004, 84 (3), 393-398.
[42] A. C. Draye; O. Persenaire; J. Brožek; J. Roda; T. Košek; Dubois, Polymer (2001), 42 (20), 8325-8332.
[43] O. Persenaire; M. Alexandre; P. Degée; P. Dubois, Biomacromolecules 2001, 2 (1), 288-294.
[44] S. I. Marras; K. P. Kladi; I. Tsivintzelis; I. Zuburtikudis; C. Panayiotou, Acta Biomaterialia 2008, 4, 756–765.
[45] S. I. Marras; I. Zuburtikudis; C. Panayiotou, European Polymer J 2007,43, 2191-2206.
[46] F. Bellucci; G. Camino; A. Frache; A. Sarra, Polym Degrad Stab polymer 2007, 92 (3), 425-436.
[47] J.W. Gilman; C. L. Jackson; A. B. Morgan; R. Harris; E. Manias; E.P. Giannelis, Chem Mater 2000, 12,1866.
[48] M. Zanetti; G. Camino; P. Reichert; R. Mulhaupt, Macromol Rapid Commun 2001, 22,176.
[49] K. Fukushima; D. Tabuani; G. Camino, Materials Science and Engineering C 2009, 29 (4), 1433-1441.
[50] H. Essawy; A. Badran; A. Youssef; A. Abd El-Hakim, Polym Bull 2004,53, 9-17.
[51] Y. Tain; H. Yu; S.S Wu; G.D. Ji, J Mater Sci Lett 2004, 39, 4301.
[52] Y. Cai; Y. Hu; L. Song; L. Lui; Z.Wang; Z. Chen,; W. Fan, J Mater Sci 2007, 42, 5785-5790.
[53] H. Azizi; J. Morshedian; M. Barikani; M. H. Wagner, Express Polym Lett 2010, 4, 252.
[54] X. Zhang; R. Xu; Z. Wu, Polym Int 2003, 52, 790.
[55] T. K. Chen.; Y.I. Tein; K.H. Wei, Polymer 2000, 41, 1345-1353.
[56] Y. S. Choi; M.H. Choi; K. H. Wang; S.O Kim; Y. K. Kim.; I. J. Chung, Macromolecules 2001, 34, 8978-8985.
[57] I. Tien.; K. H. Wei, Macromolecules 2001, 34, 9048.
[58] A. Pattanayak; S.C. Jana, Polymer 2005, 46, 3275-3288.
[59] A. Cheng; S. Wu; D. Jiang; F. Wu; J. Shen, Colloid Polym Sci 2006, 284, 1057-1061.
[60] E. P. Goodings, Chem Soc Revs 1976, 5, 95-119.
[61] G. Kemeny; S. D. Mahanti, Proc Natl Acad Sci USA 1975, 72, 999.
[62] A. E. Pochetennyi; E.V. Ratnikov, Dokl Akad Nauk Bssr 1981, 25, 896.
[63] E. Marton; C. Marton, Methods of Experimental Physics 16-Part B, Chpt. 6,7, 1980.
[64] S.T Oh.; C.S, Ha.; W. J, Cho. J Appl Polym Sci 1994, 54, 859.
[65] J. A. Grapski; S. L. Copper, Biomaterials 2001, 22, 2239.
[66] L. Song.; Y Hu.; Y. Tang.; R. Zhang; Z. Chen.; W. Fan, Polym Degrad Stab. 2005,87, 111.
[67] D.i. Yingwei; S. Iannace; E. D. Maio; L. Nicolais, Journal of Polymer Science Part B: Polymer Physics 2003, 41, 670–678.
[68] J. Zhu; P. Start; K. A. Mouritz; C. A. Wilkie, Polym Degrad Stab 2002, 77, 253-258.
[69] M. Zanetti; G. Camino; R. Thomann; R. Mulhaupt, Polymer 2001, 42, 4501- 4507.
[70] X. L. Xie; R.K.Y Li; Q. X Liu; Y.W. Mai, Polymer 2004, 45, 2796.