Analytical Study of Component Based Software Engineering

This paper is a survey of current component-based software technologies and the description of promotion and inhibition factors in CBSE. The features that software components inherit are also discussed. Quality Assurance issues in componentbased software are also catered to. The feat research on the quality model of component based system starts with the study of what the components are, CBSE, its development life cycle and the pro & cons of CBSE. Various attributes are studied and compared keeping in view the study of various existing models for general systems and CBS. When illustrating the quality of a software component an apt set of quality attributes for the description of the system (or components) should be selected. Finally, the research issues that can be extended are tabularized.

Principal Component Analysis for the Characterization in the Application of Some Soil Properties

The objective of this research is to study principal component analysis for classification of 67 soil samples collected from different agricultural areas in the western part of Thailand. Six soil properties were measured on the soil samples and are used as original variables. Principal component analysis is applied to reduce the number of original variables. A model based on the first two principal components accounts for 72.24% of total variance. Score plots of first two principal components were used to map with agricultural areas divided into horticulture, field crops and wetland. The results showed some relationships between soil properties and agricultural areas. PCA was shown to be a useful tool for agricultural areas classification based on soil properties.

The Household-Based Socio-Economic Index for Every District in Peninsular Malaysia

Deprivation indices are widely used in public health study. These indices are also referred as the index of inequalities or disadvantage. Even though, there are many indices that have been built before, it is believed to be less appropriate to use the existing indices to be applied in other countries or areas which had different socio-economic conditions and different geographical characteristics. The objective of this study is to construct the index based on the geographical and socio-economic factors in Peninsular Malaysia which is defined as the weighted household-based deprivation index. This study has employed the variables based on household items, household facilities, school attendance and education level obtained from Malaysia 2000 census report. The factor analysis is used to extract the latent variables from indicators, or reducing the observable variable into smaller amount of components or factor. Based on the factor analysis, two extracted factors were selected, known as Basic Household Amenities and Middle-Class Household Item factor. It is observed that the district with a lower index values are located in the less developed states like Kelantan, Terengganu and Kedah. Meanwhile, the areas with high index values are located in developed states such as Pulau Pinang, W.P. Kuala Lumpur and Selangor.

Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit

This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics this destroyed part is due to irreversibilities which must be determined to obtain the exergetic efficiency of the system. In the current paper a computer program has been developed using visual basic to determine the exergy destruction and the exergetic efficiencies of the components of the desalination unit at variable operation conditions such as feed water temperature, outlet air temperature, air to feed water mass ratio and salinity, in addition to cooling water mass flow rate and inlet temperature, as well as quantity of solar irradiance. The results obtained indicate that the exergy efficiency of the humidifier increases by increasing the mass ratio and decreasing the outlet air temperature. In the other hand the exergy efficiency of the condenser increases with the increase of this ratio and also with the increase of the outlet air temperature.

Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier

In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.

Exploring Life Meaningfulness and Its Psychosocial Correlates among Recovering Substance Users – An Indian Perspective

The present study was done primarily to address two major research gaps: firstly, development of an empirical measure of life meaningfulness for substance users and secondly, to determine the psychosocial determinants of life meaningfulness among the substance users. The study is classified into two phases: the first phase which dealt with development of Life Meaningfulness Scale and the second phase which examined the relationship between life meaningfulness and social support, abstinence self efficacy and depression. Both qualitative and quantitative approaches were used for framing items. A Principal Component Analysis yielded three components: Overall Goal Directedness, Striving for healthy lifestyle and Concern for loved ones which collectively accounted for 42.06% of the total variance. The scale and its subscales were also found to be highly reliable. Multiple regression analyses in the second phase of the study revealed that social support and abstinence self efficacy significantly predicted life meaningfulness among 48 recovering inmates of a de-addiction center while level of depression failed to predict life meaningfulness.

An Efficient Technique for EMI Mitigation in Fluorescent Lamps using Frequency Modulation and Evolutionary Programming

Electromagnetic interference (EMI) is one of the serious problems in most electrical and electronic appliances including fluorescent lamps. The electronic ballast used to regulate the power flow through the lamp is the major cause for EMI. The interference is because of the high frequency switching operation of the ballast. Formerly, some EMI mitigation techniques were in practice, but they were not satisfactory because of the hardware complexity in the circuit design, increased parasitic components and power consumption and so on. The majority of the researchers have their spotlight only on EMI mitigation without considering the other constraints such as cost, effective operation of the equipment etc. In this paper, we propose a technique for EMI mitigation in fluorescent lamps by integrating Frequency Modulation and Evolutionary Programming. By the Frequency Modulation technique, the switching at a single central frequency is extended to a range of frequencies, and so, the power is distributed throughout the range of frequencies leading to EMI mitigation. But in order to meet the operating frequency of the ballast and the operating power of the fluorescent lamps, an optimal modulation index is necessary for Frequency Modulation. The optimal modulation index is determined using Evolutionary Programming. Thereby, the proposed technique mitigates the EMI to a satisfactory level without disturbing the operation of the fluorescent lamp.

A Quantitative Approach to Strategic Design of Component-Based Business Process Models

A new paradigm for software design and development models software by its business process, translates the model into a process execution language, and has it run by a supporting execution engine. This process-oriented paradigm promotes modeling of software by less technical users or business analysts as well as rapid development. Since business process models may be shared by different organizations and sometimes even by different business domains, it is interesting to apply a technique used in traditional software component technology to design reusable business processes. This paper discusses an approach to apply a technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses with an aim that the process components can be reusable in different process-based software models. The approach is quantitative because the quality of process component design is measured from technical features of the process components. The approach is also strategic because the measured quality is determined against business-oriented component management goals. A software tool has been developed to measure how good a process component design is, according to the required managerial goals and comparing to other designs. We also discuss how we benefit from reusable process components.

A Methodology to Analyze Technology Convergence: Patent-Citation Based Technology Input-Output Analysis

This research proposes a methodology for patent-citation-based technology input-output analysis by applying the patent information to input-output analysis developed for the dependencies among different industries. For this analysis, a technology relationship matrix and its components, as well as input and technology inducement coefficients, are constructed using patent information. Then, a technology inducement coefficient is calculated by normalizing the degree of citation from certain IPCs to the different IPCs (International patent classification) or to the same IPCs. Finally, we construct a Dependency Structure Matrix (DSM) based on the technology inducement coefficient to suggest a useful application for this methodology.

Seismic Analysis of a S-Curved Viaduct using Stick and Finite Element Models

Stick models are widely used in studying the behaviour of straight as well as skew bridges and viaducts subjected to earthquakes while carrying out preliminary studies. The application of such models to highly curved bridges continues to pose challenging problems. A viaduct proposed in the foothills of the Himalayas in Northern India is chosen for the study. It is having 8 simply supported spans @ 30 m c/c. It is doubly curved in horizontal plane with 20 m radius. It is inclined in vertical plane as well. The superstructure consists of a box section. Three models have been used: a conventional stick model, an improved stick model and a 3D finite element model. The improved stick model is employed by making use of body constraints in order to study its capabilities. The first 8 frequencies are about 9.71% away in the latter two models. Later the difference increases to 80% in 50th mode. The viaduct was subjected to all three components of the El Centro earthquake of May 1940. The numerical integration was carried out using the Hilber- Hughes-Taylor method as implemented in SAP2000. Axial forces and moments in the bridge piers as well as lateral displacements at the bearing levels are compared for the three models. The maximum difference in the axial forces and bending moments and displacements vary by 25% between the improved and finite element model. Whereas, the maximum difference in the axial forces, moments, and displacements in various sections vary by 35% between the improved stick model and equivalent straight stick model. The difference for torsional moment was as high as 75%. It is concluded that the stick model with body constraints to model the bearings and expansion joints is not desirable in very sharp S curved viaducts even for preliminary analysis. This model can be used only to determine first 10 frequency and mode shapes but not for member forces. A 3D finite element analysis must be carried out for meaningful results.

Heritability Estimates of Lactation Traits in Maltese Goat

Data on 657 lactation from 163 Maltese goat, collected over a 5-year period were analyzed by a mixed model to estimate the variance components for heritability. The considered lactation traits were: milk yield (MY) and lactation length (LL). Year, parity and type of birth (single or twin) were significant sources of variation for lactation length; on the other hand milk yield was significantly influenced only by the year. The average MY was 352.34 kg and the average LL was 230 days. Estimates of heritability were 0.21 and 0.15 for MY and LL respectively. These values suggest there is low correlation between genotype and phenotype so it may be difficult to evaluate animals directly on phenotype. So, the genetic improvement of this breed may be quite slow without the support of progeny test aimed to select Maltese breeders.

A New Vector Quantization Front-End Process for Discrete HMM Speech Recognition System

The paper presents a complete discrete statistical framework, based on a novel vector quantization (VQ) front-end process. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means- DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.

Millimeter Wave I/Q Generation with the Inductive Resonator Matched Poly-Phase Filter

A way of generating millimeter wave I/Q signal using inductive resonator matched poly-phase filter is suggested. Normally the poly-phase filter generates quite accurate I/Q phase and magnitude but the loss of the filter is considerable due to series connection of passive RC components. This loss term directly increases system noise figure when the poly-phase filter is used in RF Front-end. The proposed matching method eliminates above mentioned loss and in addition provides gain on the passive filter. The working algorithm is illustrated by mathematical analysis. The generated I/Q signal is used in implementing millimeter wave phase shifter for the 60 GHz communication system to verify its effectiveness. The circuit is fabricated in 90 nm TSMC RF CMOS process under 1.2 V supply voltage. The measurement results showed that the suggested method improved gain by 6.5 dB and noise by 2.3 dB. The summary of the proposed I/Q generation is compared with previous works.

Mathematical Modeling Experimental Approach of the Friction on the Tool-Chip Interface of Multicoated Carbide Turning Inserts

The importance of machining process in today-s industry requires the establishment of more practical approaches to clearly represent the intimate and severe contact on the tool-chipworkpiece interfaces. Mathematical models are developed using the measured force signals to relate each of the tool-chip friction components on the rake face to the operating cutting parameters in rough turning operation using multilayers coated carbide inserts. Nonlinear modeling proved to have high capability to detect the nonlinear functional variability embedded in the experimental data. While feedrate is found to be the most influential parameter on the friction coefficient and its related force components, both cutting speed and depth of cut are found to have slight influence. Greater deformed chip thickness is found to lower the value of friction coefficient as the sliding length on the tool-chip interface is reduced.

Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules

In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.

AC Signals Estimation from Irregular Samples

The paper deals with the estimation of amplitude and phase of an analogue multi-harmonic band-limited signal from irregularly spaced sampling values. To this end, assuming the signal fundamental frequency is known in advance (i.e., estimated at an independent stage), a complexity-reduced algorithm for signal reconstruction in time domain is proposed. The reduction in complexity is achieved owing to completely new analytical and summarized expressions that enable a quick estimation at a low numerical error. The proposed algorithm for the calculation of the unknown parameters requires O((2M+1)2) flops, while the straightforward solution of the obtained equations takes O((2M+1)3) flops (M is the number of the harmonic components). It is applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The proposed method of processing can be used for precise RMS measurements (for power and energy) of a periodic signal based on the presented signal reconstruction. The paper investigates the errors related to the signal parameter estimation, and there is a computer simulation that demonstrates the accuracy of these algorithms.

Design, Fabrication and Performance Evaluation of Mobile Engine-Driven Pneumatic Paddy Collector

A simple mobile engine-driven pneumatic paddy collector made of locally available materials using local manufacturing technology was designed, fabricated, and tested for collecting and bagging of paddy dried on concrete pavement. The pneumatic paddy collector had the following major components: radial flat bladed type centrifugal fan, power transmission system, bagging area, frame and the conveyance system. Results showed significant differences on the collecting capacity, noise level, and fuel consumption when rotational speed of the air mover shaft was varied. Other parameters such as collecting efficiency, air velocity, augmented cracked grain percentage, and germination rate were not significantly affected by varying rotational speed of the air mover shaft. The pneumatic paddy collector had a collecting efficiency of 99.33 % with a collecting capacity of 2685.00 kg/h at maximum rotational speed of centrifugal fan shaft of about 4200 rpm. The machine entailed an investment cost of P 62,829.25. The break-even weight of paddy was 510,606.75 kg/yr at a collecting cost of 0.11 P/kg of paddy. Utilizing the machine for 400 hours per year generated an income of P 23,887.73. The projected time needed to recover cost of the machine based on 2685 kg/h collecting capacity was 2.63 year.

Adaptive Fourier Decomposition Based Signal Instantaneous Frequency Computation Approach

There have been different approaches to compute the analytic instantaneous frequency with a variety of background reasoning and applicability in practice, as well as restrictions. This paper presents an adaptive Fourier decomposition and (α-counting) based instantaneous frequency computation approach. The adaptive Fourier decomposition is a recently proposed new signal decomposition approach. The instantaneous frequency can be computed through the so called mono-components decomposed by it. Due to the fast energy convergency, the highest frequency of the signal will be discarded by the adaptive Fourier decomposition, which represents the noise of the signal in most of the situation. A new instantaneous frequency definition for a large class of so-called simple waves is also proposed in this paper. Simple wave contains a wide range of signals for which the concept instantaneous frequency has a perfect physical sense. The α-counting instantaneous frequency can be used to compute the highest frequency for a signal. Combination of these two approaches one can obtain the IFs of the whole signal. An experiment is demonstrated the computation procedure with promising results.

Mechanical Structure Design Optimization by Blind Number Theory: Time-dependent Reliability

In a product development process, understanding the functional behavior of the system, the role of components in achieving functions and failure modes if components/subsystem fails its required function will help develop appropriate design validation and verification program for reliability assessment. The integration of these three issues will help design and reliability engineers in identifying weak spots in design and planning future actions and testing program. This case study demonstrate the advantage of unascertained theory described in the subjective cognition uncertainty, and then applies blind number (BN) theory in describing the uncertainty of the mechanical system failure process and the same time used the same theory in bringing out another mechanical reliability system model. The practical calculations shows the BN Model embodied the characters of simply, small account of calculation but betterforecasting capability, which had the value of macroscopic discussion to some extent.

Wavelet-Based Data Compression Technique for Wireless Sensor Networks

In this paper, we proposed an efficient data compression strategy exploiting the multi-resolution characteristic of the wavelet transform. We have developed a sensor node called “Smart Sensor Node; SSN". The main goals of the SSN design are lightweight, minimal power consumption, modular design and robust circuitry. The SSN is made up of four basic components which are a sensing unit, a processing unit, a transceiver unit and a power unit. FiOStd evaluation board is chosen as the main controller of the SSN for its low costs and high performance. The software coding of the implementation was done using Simulink model and MATLAB programming language. The experimental results show that the proposed data compression technique yields recover signal with good quality. This technique can be applied to compress the collected data to reduce the data communication as well as the energy consumption of the sensor and so the lifetime of sensor node can be extended.