Main Bearing Stiffness Investigation

Simplified coupled engine block-crankshaft models based on beam theory provide an efficient substitute to engine simulation in the design process. These models require accurate definition of the main bearing stiffness. In this paper, an investigation of this stiffness is presented. The clearance effect is studied using a smooth bearing model. It is manifested for low shaft displacement. The hydrodynamic assessment model shows that the oil film has no stiffness for low loads and it is infinitely rigid for important loads. The deformation stiffness is determined using a suitable finite elements model based on real CADs. As a result, a main bearing behaviour law is proposed. This behaviour law takes into account the clearance, the hydrodynamic sustention and the deformation stiffness. It ensures properly the transition from the configuration low rigidity to the configuration high rigidity.

Assessment of the Adaptive Pushover Analysis Using Displacement-based Loading in Prediction the Seismic Behaviour of the Unsymmetric-Plan Buildings

The recent drive for use of performance-based methodologies in design and assessment of structures in seismic areas has significantly increased the demand for the development of reliable nonlinear inelastic static pushover analysis tools. As a result, the adaptive pushover methods have been developed during the last decade, which unlike their conventional pushover counterparts, feature the ability to account for the effect that higher modes of vibration and progressive stiffness degradation might have on the distribution of seismic storey forces. Even in advanced pushover methods, little attention has been paid to the Unsymmetric structures. This study evaluates the seismic demands for three dimensional Unsymmetric-Plan buildings determined by the Displacement-based Adaptive Pushover (DAP) analysis, which has been introduced by Antoniou and Pinho [2004]. The capability of DAP procedure in capturing the torsional effects due to the irregularities of the structures, is investigated by comparing its estimates to the exact results, obtained from Incremental Dynamic Analysis (IDA). Also the capability of the procedure in prediction the seismic behaviour of the structure is discussed.

A Review on Natural Fibre Reinforced Polymer Composites

Renewable natural fibres such as oil palm, flax, and pineapple leaf can be utilized to obtain new high performance polymer materials. The reuse of waste natural fibres as reinforcement for polymer is a sustainable option to the environment. However, due to its high hydroxyl content of cellulose, natural fibres are susceptible to absorb water that affects the composite mechanical properties adversely. Research found that Nano materials such as Nano Silica Carbide (n-SiC) and Nano Clay can be added into the polymer composite to overcome this problem by enhancing its mechanical properties in wet condition. The addition of Nano material improves the tensile and wear properties, flexural stressstrain behaviour, fracture toughness, and fracture strength of polymer natural composites in wet and dry conditions.

On the Oil Repellency of Nanotextured Aluminum Surface

Two different superhydrophobic surfaces were elaborated and their oil repellency behavior was evaluated using several liquid with different surface tension. A silicone rubber/SiO2 nanocomposite coated (A) on aluminum substrate by “spin-coating" and the sample B was an anodized aluminum surface covered by Teflon-like coating. A high static contact angle about ∼162° was measured for two prepared surfaces on which the water droplet rolloff. Scanning electron microscopy (SEM) showed the presence of micro/nanostructures for both sample A and B similar to that of lotus leaf. However the sample A presented significantly different behaviour of wettability against the low surface tension liquid. Sample A has been wetted totally by oil (dodecan) droplet while sample B showed oleophobic behaviour. Oleophobic property of Teflon like coating can be contributed to the presence of CF2 and CF3 functional group which was shown by XPS analysis.

Critical Points of Prefabricated Reinforced Concrete Wall Systems of Multi-storey Buildings

With respect to the dissipation of energy through plastic deformation of joints of prefabricated wall units, the paper points out the principal importance of efficient reinforcement of the prefabricated system at its joints. The method, quality and amount of reinforcement are essential for reaching the necessary degree of joint ductility. The paper presents partial results of experimental research of vertical joints of prefabricated units exposed to monotonously rising loading and repetitive shear force and formulates a conclusion that the limit state of the structure as a whole is preceded by the disintegration of joints, or that the structure tends to pass from linearly elastic behaviour to non-linearly elastic to plastic behaviour by exceeding the proportional elastic limit in joints.Experimental verification on a model of a 7-storey prefabricated structure revealed weak points in its load-bearing systems, mainly at places of critical points around openings situated in close proximity to vertical joints of mutually perpendicularly oriented walls.

A Sociocybernetics Data Analysis Using Causality in Tourism Networks

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Seismic Behaviour of Romanian Ortodox Churches, Modeling of Failure Modes by Rigid Blocks

Historic religious buildings located in seismic areas have developed different failure mechanisms. Simulation of failure modes is done with computer programs through a nonlinear dynamic analysis or simplified using the method of failure blocks. Currently there are simulation methodologies of failure modes based on the failure rigid blocks method only for Roman Catholic churches type. Due to differences of shape in plan, elevation and construction systems between Orthodox churches and Catholic churches, for the first time there were initiated researches in the development of this simulation methodology for Orthodox churches. In this article are presented the first results from the researches. The theoretical results were compared with real failure modes recorded at an Orthodox church from Banat region, severely damaged by earthquakes in 1991. Simulated seismic response, using a computer program based on finite element method was confirmed by cracks after earthquakes. The consolidation of the church was made according to these theoretical results, realizing a rigid floor connecting all the failure blocks.

Optimum Shape and Design of Cooling Towers

The aim of the current study is to develop a numerical tool that is capable of achieving an optimum shape and design of hyperbolic cooling towers based on coupling a non-linear finite element model developed in-house and a genetic algorithm optimization technique. The objective function is set to be the minimum weight of the tower. The geometric modeling of the tower is represented by means of B-spline curves. The finite element method is applied to model the elastic buckling behaviour of a tower subjected to wind pressure and dead load. The study is divided into two main parts. The first part investigates the optimum shape of the tower corresponding to minimum weight assuming constant thickness. The study is extended in the second part by introducing the shell thickness as one of the design variables in order to achieve an optimum shape and design. Design, functionality and practicality constraints are applied.

Virtual Learning Process Environment: Cohort Analytics for Learning and Learning Processes

Traditional higher-education classrooms allow lecturers to observe students- behaviours and responses to a particular pedagogy during learning in a way that can influence changes to the pedagogical approach. Within current e-learning systems it is difficult to perform continuous analysis of the cohort-s behavioural tendency, making real-time pedagogical decisions difficult. This paper presents a Virtual Learning Process Environment (VLPE) based on the Business Process Management (BPM) conceptual framework. Within the VLPE, course designers can model various education pedagogies in the form of learning process workflows using an intuitive flow diagram interface. These diagrams are used to visually track the learning progresses of a cohort of students. This helps assess the effectiveness of the chosen pedagogy, providing the information required to improve course design. A case scenario of a cohort of students is presented and quantitative statistical analysis of their learning process performance is gathered and displayed in realtime using dashboards.

Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method

This paper describes a three-dimensional thermal model of the current path included in the low voltage power circuit breakers. The model can be used to analyse the thermal behaviour of the current path during both steady-state and transient conditions. The current path lengthwise temperature distribution and timecurrent characteristic of the terminal connections of the power circuit breaker have been obtained. The influence of the electric current and voltage drop on main electric contact of the circuit breaker has been investigated. To validate the three-dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Environmental Management in Arid Regions:The Question of Water

Only recently have water ethics received focused interest in the international water community. Because water is metabolically basic to life, an ethical dimension persists in every decision related to water. Water ethics at once express human society-s approach to water and act as guidelines for behaviour. Ideas around water are often implicit and embedded as assumptions. They can be entrenched in behaviour and difficult to contest because they are difficult to “see". By explicitly revealing the ethical ideas underlying water-related decisions, human society-s relationship with water, and with natural systems of which water is part, can be contested and shifted or be accepted with conscious intention by human society. In recent decades, improved understanding of water-s importance for ecosystem functioning and ecological services for human survival is moving us beyond this growth-driven, supplyfocused management paradigm. Environmental ethics challenge this paradigm by extending the ethical sphere to the environment and thus water or water Resources management per se. An ethical approach is a legitimate, important, and often ignored approach to effect change in environmental decision making. This qualitative research explores principles of water ethics and examines the underlying ethical precepts of selected water policy examples. The constructed water ethic principles act as a set of criteria against which a policy comparison can be established. This study shows that water Resources management is a progressive issue by embracing full public participation and a new planning model, and knowledgegeneration initiatives.

Cognitive Behaviour Therapy to Treat Social Anxiety Disorder: A Psychology Case

Rational Emotive Behaviour Therapy is the first cognitive behavior therapy which was introduced by Albert Ellis. This is a systematic and structured psychotherapy which is effective in treating various psychological problems. A patient, 25 years old male, experienced intense fear and situational panic attack to return to his faculty and to face his class-mates after a long absence (2 years). This social anxiety disorder was a major factor that impeded the progress of his study. He was treated with the use of behavioural technique such as relaxation breathing technique and cognitive techniques such as imagery, cognitive restructuring, rationalization technique and systematic desensitization. The patient reported positive improvement in the anxiety disorder, able to progress well in studies and lead a better quality of life as a student.

Topology Preservation in SOM

The SOM has several beneficial features which make it a useful method for data mining. One of the most important features is the ability to preserve the topology in the projection. There are several measures that can be used to quantify the goodness of the map in order to obtain the optimal projection, including the average quantization error and many topological errors. Many researches have studied how the topology preservation should be measured. One option consists of using the topographic error which considers the ratio of data vectors for which the first and second best BMUs are not adjacent. In this work we present a study of the behaviour of the topographic error in different kinds of maps. We have found that this error devaluates the rectangular maps and we have studied the reasons why this happens. Finally, we suggest a new topological error to improve the deficiency of the topographic error.

Dynamic Response of a Water Tower Composed of Interlocked Panels

Earthquakes produce some of the most violent loading situations that a structure can be subjected to and if a structure fails under these loads then inevitably human life is put at risk. One of the most common methods by which a structure fails under seismic loading is at the connection of structural elements. The research presented in this paper investigates the interlock systems as a novel method for building structures. The main objective of this experimental study wasto determine the dynamic characteristics and the seismic behaviour of the proposed structures compared to conventional structural systemsduring seismic motions. Results of this study indicate that the interlock mechanism of the panels influences the behaviour of lateral load-resisting systems of the structures during earthquakes, contributing to better structural flexibility and easier maintenance.

Mutation Rate for Evolvable Hardware

Evolvable hardware (EHW) refers to a selfreconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). A lot of research has been done in this area several different EA have been introduced. Every time a specific EA is chosen for solving a particular problem, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade a lot of research has been carried out in order to identify the best parameters for the EA-s components for different “test-problems". However different researchers propose different solutions. In this paper the behaviour of mutation rate on (1+λ) evolution strategy (ES) for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies values of the logic cell inputs, the cell type (for example from AND to NOR) and the circuit output. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates used for the evolved circuits. The experimental results found provide the behaviour of the mutation rate to be used during evolution for the design and optimization of logic circuits. The researches on the best mutation rate during the last 40 years are also summarized.

Transient Analysis of a Single-Server Queue with Fixed-Size Batch Arrivals

The transient analysis of a queuing system with fixed-size batch Poisson arrivals and a single server with exponential service times is presented. The focus of the paper is on the use of the functions that arise in the analysis of the transient behaviour of the queuing system. These functions are shown to be a generalization of the modified Bessel functions of the first kind, with the batch size B as the generalizing parameter. Results for the case of single-packet arrivals are obtained first. The similarities between the two families of functions are then used to obtain results for the general case of batch arrival queue with a batch size larger than one.

Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern

Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. A methodology for obtaining high position accuracy with a linear pneumatic actuator is presented. During experimentation with a number of PID classical control approaches over many operations of the pneumatic system, the need for frequent manual re-tuning of the controller could not be eliminated. The reason for this problem is thermal and energy losses inside the cylinder body due to the complex friction forces developed by the piston displacements. Although PD controllers performed very well over short periods, it was necessary in our research project to introduce some form of automatic gain-scheduling to achieve good long-term performance. We chose a fuzzy logic system to do this, which proved to be an easily designed and robust approach. Since the PD approach showed very good behaviour in terms of position accuracy and settling time, it was incorporated into a modified form of the 1st order Tagaki- Sugeno fuzzy method to build an overall controller. This fuzzy gainscheduler uses an input variable which automatically changes the PD gain values of the controller according to the frequency of repeated system operations. Performance of the new controller was significantly improved and the need for manual re-tuning was eliminated without a decrease in performance. The performance of the controller operating with the above method is going to be tested through a high-speed web network (GRID) for research purposes.

Development of a Simulator for Explaining Organic Chemical Reactions Based on Qualitative Process Theory

This paper discusses the development of a qualitative simulator (abbreviated QRiOM) for predicting the behaviour of organic chemical reactions. The simulation technique is based on the qualitative process theory (QPT) ontology. The modelling constructs of QPT embody notions of causality which can be used to explain the behaviour of a chemical system. The major theme of this work is that, in a qualitative simulation environment, students are able to articulate his/her knowledge through the inspection of explanations generated by software. The implementation languages are Java and Prolog. The software produces explanation in various forms that stresses on the causal theories in the chemical system which can be effectively used to support learning.

EU Families and Adolescents Quit Tobacco Focus Group Analysis in Hungary

In the frame of the European Union project entitled EU-Families and Adolescents Quit Tobacco (www.eufaqt.eu) focus group analysis has been carried out in Hungary to acquire qualitative information on attitudes towards smoking in groups of adolescents, parents and educators, respectively. It rendered to identify methods for smoking prevention/ intervention with family approach. The results explored the role of the family in smoking behaviour. Teachers do not feel responsibility in prevention or cessation of smoking. Adolescents are not aware of the addictive effect of the cigarette. Water pipe is popular among adolescent, therefore spreading of more information needed on the harmful effects of water pipe. We outlined the requirement for professionals to provide interventions. Partnership of EU-FAQT project has worked out antismoking interventions for adolescents and their families conducted by psychologists to ensure skill development to prevent and quit tobacco.

Sexual Perception and Behavior: Gender Differences among Married Ilocanos

This study attempted to compare the sexual perceptions and behaviors of male and female married Ilocanos. Data were gathered from 1,374 married Ilocanos (687 husbands and 687 wives) from nine municipalities and one city of the First District of Ilocos Sur. Findings showed that the male and female married Ilocanos differ in their psychological and physical sexual perceptions, but they had common social and spiritual sexual perceptions. Moreover, they were consistent in their behaviors towards sex, except for their behaviour after sex without reaching orgasm, wherein the males feel bad after having sex without reaching orgasm, while the females simply sleep it off.