Improved Artificial Immune System Algorithm with Local Search

The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithms

Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy

An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably.

Thermo-Mechanical Characterization of Skin Laser Soldering using Au Coated SiO2 Nanoshells

Gold coated silica core nanoparticles have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for particular applications. The purposes of this study was to synthesize and use different concentration of gold nanoshells as exogenous material for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different concentration of gold nanoshells were prepared. A full thickness incision of 2×20 mm2 was made on the surface and after addition of mixtures it was irradiated by an 810nm diode laser at different power densities. The changes of tensile strength σt due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σt of repaired incisions increases by increasing the concentration of gold nanoshells, Ns and decreasing Vs. It is therefore important to consider the trade off between the scan velocity and the surface temperature for achieving an optimum operating condition. In our case this corresponds to σt =1610 gr/cm2 at I~ 60 Wcm-2, T ~ 65ºC, Ns =10 and Vs=0.2mms-1.

On-line Testing of Software Components for Diagnosis of Embedded Systems

This paper studies the dependability of componentbased applications, especially embedded ones, from the diagnosis point of view. The principle of the diagnosis technique is to implement inter-component tests in order to detect and locate the faulty components without redundancy. The proposed approach for diagnosing faulty components consists of two main aspects. The first one concerns the execution of the inter-component tests which requires integrating test functionality within a component. This is the subject of this paper. The second one is the diagnosis process itself which consists of the analysis of inter-component test results to determine the fault-state of the whole system. Advantage of this diagnosis method when compared to classical redundancy faulttolerant techniques are application autonomy, cost-effectiveness and better usage of system resources. Such advantage is very important for many systems and especially for embedded ones.

Surface Modification by EUV laser Beam based on Capillary Discharge

Many applications require surface modification and micro-structuring of polymers. For these purposes is mainly used ultraviolet (UV) radiation from excimer lamps or excimer lasers. However, these sources have a decided disadvantage - degrading the polymer deep inside due to relatively big radiation penetration depth which may exceed 100 μm. In contrast, extreme ultraviolet (EUV) radiation is absorbed in a layer approximately 100 nm thick only. In this work, the radiation from a discharge-plasma EUV source (with wavelength 46.9 nm) based on a capillary discharge driver is focused with a spherical Si/Sc multilayer mirror for surface modification of PMMA sample or thin gold layer (thickness about 40 nm). It was found that the focused EUV laser beam is capable by one shot to ablate PMMA or layer of gold, even if the focus is significantly influenced by astigmatism.

Analysis of Message Authentication in Turbo Coded Halftoned Images using Exit Charts

Considering payload, reliability, security and operational lifetime as major constraints in transmission of images we put forward in this paper a steganographic technique implemented at the physical layer. We suggest transmission of Halftoned images (payload constraint) in wireless sensor networks to reduce the amount of transmitted data. For low power and interference limited applications Turbo codes provide suitable reliability. Ensuring security is one of the highest priorities in many sensor networks. The Turbo Code structure apart from providing forward error correction can be utilized to provide for encryption. We first consider the Halftoned image and then the method of embedding a block of data (called secret) in this Halftoned image during the turbo encoding process is presented. The small modifications required at the turbo decoder end to extract the embedded data are presented next. The implementation complexity and the degradation of the BER (bit error rate) in the Turbo based stego system are analyzed. Using some of the entropy based crypt analytic techniques we show that the strength of our Turbo based stego system approaches that found in the OTPs (one time pad).

Classification of Fuzzy Petri Nets, and Their Applications

Petri Net (PN) has proven to be effective graphical, mathematical, simulation, and control tool for Discrete Event Systems (DES). But, with the growth in the complexity of modern industrial, and communication systems, PN found themselves inadequate to address the problems of uncertainty, and imprecision in data. This gave rise to amalgamation of Fuzzy logic with Petri nets and a new tool emerged with the name of Fuzzy Petri Nets (FPN). Although there had been a lot of research done on FPN and a number of their applications have been anticipated, but their basic types and structure are still ambiguous. Therefore, in this research, an effort is made to categorize FPN according to their structure and algorithms Further, literature review of the applications of FPN in the light of their classifications has been done.

Towards a Sustained Use of Renewable Energy Sources in Romania

The paper presents the potential for RES in Romania and the results of the Romanian national research project “Romania contribution to the European targets regarding the development of renewable energy sources - PROMES". The objective of the project is the development of energy generation from renewable energy sources (RES) in Romania by drawing up scenarios and prognosis harmonized with national and European targets, RES development effects modeling (environmental, economic, social etc.), research of the impact of the penetration of RES into the main, implementation of an advanced software system tool for RES information recording and communication, experimental research based on demonstrative applications. The expected results are briefly presented, as well as the social, economic and environmental impact.

Topological Queries on Graph-structured XML Data: Models and Implementations

In many applications, data is in graph structure, which can be naturally represented as graph-structured XML. Existing queries defined on tree-structured and graph-structured XML data mainly focus on subgraph matching, which can not cover all the requirements of querying on graph. In this paper, a new kind of queries, topological query on graph-structured XML is presented. This kind of queries consider not only the structure of subgraph but also the topological relationship between subgraphs. With existing subgraph query processing algorithms, efficient algorithms for topological query processing are designed. Experimental results show the efficiency of implementation algorithms.

Performance Improvement in the Bivariate Models by using Modified Marginal Variance of Noisy Observations for Image-Denoising Applications

Most simple nonlinear thresholding rules for wavelet- based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. This paper attempts to give a recipe for selecting one of the popular image-denoising algorithms based on VisuShrink, SureShrink, OracleShrink, BayesShrink and BiShrink and also this paper compares different Bivariate models used for image denoising applications. The first part of the paper compares different Shrinkage functions used for image-denoising. The second part of the paper compares different bivariate models and the third part of this paper uses the Bivariate model with modified marginal variance which is based on Laplacian assumption. This paper gives an experimental comparison on six 512x512 commonly used images, Lenna, Barbara, Goldhill, Clown, Boat and Stonehenge. The following noise powers 25dB,26dB, 27dB, 28dB and 29dB are added to the six standard images and the corresponding Peak Signal to Noise Ratio (PSNR) values are calculated for each noise level.

Biodegradable Surfactants for Advanced Drug Delivery Strategies

Oxidative stress makes up common incidents in eukaryotic metabolism. The presence of diverse components disturbing the equilibrium during oxygen metabolism increases oxidative damage unspecifically in living cells. Body´s own ubiquinone (Q10) seems to be a promising drug in defending the heightened appearance of reactive oxygen species (ROS). Though, its lipophilic properties require a new strategy in drug formulation to overcome their low bioavailability. Consequently, the manufacture of heterogeneous nanodispersions is in focus for medical applications. The composition of conventional nanodispersions is made up of a drug-consisting core and a surfactive agent, also named as surfactant. Long-termed encapsulation of the surfactive components into tissues might be the consequence of the use during medical therapeutics. The potential of provoking side-effects is given by their nonbiodegradable properties. Further improvements during fabrication process use the incorporation of biodegradable components such as modified γ-polyglutamic acid which decreases the potential of prospective side-effects.

Chances and Challenges of Intelligent Technologies in the Production and Retail Sector

This paper provides an introduction into the evolution of information and communication technology and illustrates its usage in the work domain. The paper is sub-divided into two parts. The first part gives an overview over the different phases of information processing in the work domain. It starts by charting the past and present usage of computers in work environments and shows current technological trends, which are likely to influence future business applications. The second part starts by briefly describing, how the usage of computers changed business processes in the past, and presents first Ambient Intelligence applications based on identification and localization information, which are already used in the production and retail sector. Based on current systems and prototype applications, the paper gives an outlook of how Ambient Intelligence technologies could change business processes in the future.

Understanding and Designing Situation-Aware Mobile and Ubiquitous Computing Systems

Using spatial models as a shared common basis of information about the environment for different kinds of contextaware systems has been a heavily researched topic in the last years. Thereby the research focused on how to create, to update, and to merge spatial models so as to enable highly dynamic, consistent and coherent spatial models at large scale. In this paper however, we want to concentrate on how context-aware applications could use this information so as to adapt their behavior according to the situation they are in. The main idea is to provide the spatial model infrastructure with a situation recognition component based on generic situation templates. A situation template is – as part of a much larger situation template library – an abstract, machinereadable description of a certain basic situation type, which could be used by different applications to evaluate their situation. In this paper, different theoretical and practical issues – technical, ethical and philosophical ones – are discussed important for understanding and developing situation dependent systems based on situation templates. A basic system design is presented which allows for the reasoning with uncertain data using an improved version of a learning algorithm for the automatic adaption of situation templates. Finally, for supporting the development of adaptive applications, we present a new situation-aware adaptation concept based on workflows.

Review of Surface Electromyogram Signals: Its Analysis and Applications

Electromyography (EMG) is the study of muscles function through analysis of electrical activity produced from muscles. This electrical activity which is displayed in the form of signal is the result of neuromuscular activation associated with muscle contraction. The most common techniques of EMG signal recording are by using surface and needle/wire electrode where the latter is usually used for interest in deep muscle. This paper will focus on surface electromyogram (SEMG) signal. During SEMG recording, several problems had to been countered such as noise, motion artifact and signal instability. Thus, various signal processing techniques had been implemented to produce a reliable signal for analysis. SEMG signal finds broad application particularly in biomedical field. It had been analyzed and studied for various interests such as neuromuscular disease, enhancement of muscular function and human-computer interface.

The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem

Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.

ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location

Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Real-time Laser Monitoring based on Pipe Detective Operation

The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.

Adaptive Hierarchical Key Structure Generation for Key Management in Wireless Sensor Networks using A*

Wireless Sensor networks have a wide spectrum of civil and military applications that call for secure communication such as the terrorist tracking, target surveillance in hostile environments. For the secure communication in these application areas, we propose a method for generating a hierarchical key structure for the efficient group key management. In this paper, we apply A* algorithm in generating a hierarchical key structure by considering the history data of the ratio of addition and eviction of sensor nodes in a location where sensor nodes are deployed. Thus generated key tree structure provides an efficient way of managing the group key in terms of energy consumption when addition and eviction event occurs. A* algorithm tries to minimize the number of messages needed for group key management by the history data. The experimentation with the tree shows efficiency of the proposed method.

A PIM (Processor-In-Memory) for Computer Graphics : Data Partitioning and Placement Schemes

The demand for higher performance graphics continues to grow because of the incessant desire towards realism. And, rapid advances in fabrication technology have enabled us to build several processor cores on a single die. Hence, it is important to develop single chip parallel architectures for such data-intensive applications. In this paper, we propose an efficient PIM architectures tailored for computer graphics which requires a large number of memory accesses. We then address the two important tasks necessary for maximally exploiting the parallelism provided by the architecture, namely, partitioning and placement of graphic data, which affect respectively load balances and communication costs. Under the constraints of uniform partitioning, we develop approaches for optimal partitioning and placement, which significantly reduce search space. We also present heuristics for identifying near-optimal placement, since the search space for placement is impractically large despite our optimization. We then demonstrate the effectiveness of our partitioning and placement approaches via analysis of example scenes; simulation results show considerable search space reductions, and our heuristics for placement performs close to optimal – the average ratio of communication overheads between our heuristics and the optimal was 1.05. Our uniform partitioning showed average load-balance ratio of 1.47 for geometry processing and 1.44 for rasterization, which is reasonable.

Application of CPN Tools for Simulation and Analysis of Bandwidth Allocation

We consider the problem of bandwidth allocation in a substrate network as an optimization problem for the aggregate utility of multiple applications with diverse requirements and describe a simulation scheme for dynamically adaptive bandwidth allocation protocols. The proposed simulation model based on Coloured Petri Nets (CPN) is realized using CPN Tools.