Surface Modification by EUV laser Beam based on Capillary Discharge

Many applications require surface modification and micro-structuring of polymers. For these purposes is mainly used ultraviolet (UV) radiation from excimer lamps or excimer lasers. However, these sources have a decided disadvantage - degrading the polymer deep inside due to relatively big radiation penetration depth which may exceed 100 μm. In contrast, extreme ultraviolet (EUV) radiation is absorbed in a layer approximately 100 nm thick only. In this work, the radiation from a discharge-plasma EUV source (with wavelength 46.9 nm) based on a capillary discharge driver is focused with a spherical Si/Sc multilayer mirror for surface modification of PMMA sample or thin gold layer (thickness about 40 nm). It was found that the focused EUV laser beam is capable by one shot to ablate PMMA or layer of gold, even if the focus is significantly influenced by astigmatism.




References:
[1] B. Yaakobi, H. Kim, J.M. Soures, H.W. Deckman and J. Dunsmuir,
"Submicron X-ray lithography using laser-produced plasma as a source",
Appl. Phys.Lett. 43, 1983, pp. 686-688.
[2] L. Juha, J. Krasa, A. Präg, A. Cejnarova, D. Chvostova, K. Rohlena, K.
Jungwirth, J. Kravarik, P. Kubes, Yu. L. Bakshaev, A. S. Chernenko, V.
D. Korolev, V. I. Tumanov, M. I. Ivanov, A. Bernardinello, J.
Ullschmied, and F. P. Boody, "Ablation of poly (methyl methacrylate)
by a single pulse of soft X-rays emitted from Z-pinch and laser-produced
plasmas", Surf. Rev. Lett. 9, 2002, p. 347-352.
[3] H. Fiedorowicz, A. Bartnik, M. Bittner, L. Juha, J. Krasa, P. Kubat, J.
Mikolajczyk, and R. Rakowski, "Micromachining of organics polymers
by direct photo-etching using a laser plasma X-ray source"
Microelectron. Eng. 73-74, 2004, pp. 336-339.
[4] A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, A. Szczurek and M.
Szczurek, "Ablation and surface modifications of PMMA using a laserplasma
EUV source", Appl. Phys. B 96, 2009, pp. 727-730.
[5] L. Juha, A. R. Präg, J. Krasa, A. Cejnarova, B. Kralikova, J. Skala, D.
Chvostova, J. Krzywinski, A. Andrejczuk, M. Jurek, D. Klinger, R.
Sobierajski, H. Fiedorowicz, A. Bartnik, L. Pína, J. Kravarik, P. Kubes,
Yu. L. Bakshaev, A. S. Chernenko, V. D. Korolev, V. I. Tumanov, M. I.
Ivanov, M. Scholz, L. Ryc, K. Tomaszewski, R. Viskup, and F. P.
Boody, "Ablation of Organic Polymers and Elemental Solids Induced by
Intense XUV Radiation", in AIP Conf. Proc. 641, 2002, p. 504.
[6] A. T. Anderson, M. T. Tobin, and P. F. Peterson, "X-ray response of
National-Ignition-Facility first surface materials" Fusion Technol. 26,
1994, pp. 804-808
[7] L. Juha, M. Bittner, D. Chvostová, J. Krása, Z. Otcenasek, A. R. Präg, J.
Ullschmied, Z. Pientka, J. Krzywinski, J. B. Pelka, A. Wawro, M. E.
Grisham, G. Vaschenko, C. S. Menoni, and J. J. Rocca, "Ablation of
organic polymers by 46.9-nm laser radiation," Appl. Phys. Lett. 86,
2005, 034109.
[8] Claude R. Phipps, "Laser Ablation And Its Applications", Springer,
2007, pp. 529-548.
[9] H. Deno, S. Sugiyama, Y. Kakudate, M. Yoshida, and S. Fujiwara,
"VUV ablation of polymers by emission from gas puff Z-pinch plasmas"
Appl. Surf. Sci. 96-98, 1996, pp. 563-568.
[10] Y. Zhang, T. Katoh, M. Washio, H. Yamada, and S. Hamada, "High
aspect ratio micromachining Teflon by direct exposure to synchrotron
radiation", Appl. Phys.Lett. 67, 1995, pp. 872-874.
[11] T. Katoh and Y. Zhang, "High aspect ratio micromachining by
synchrotron radiation direct photo-etching", Microsyst. Technol. 4, 1998,
pp. 135-138.
[12] O. Frolov, K. Kolacek, J. Schmidt, J. Straus, V. Prukner, "Soft X-ray
radiation generated by fast capillary discharge", in Proceedings of
ICPIG 2009, Vol.2, Red Hook, NY, 2009, pp. 733-735.
[13] B. N. Benware., A. Ozols, J. J. Rocca, I. A. Artioukov, V. V.
Kondratenko, A. V. Vinogradov, "Focusing of a tabletop soft-x-ray laser
beam and laser ablation", Optics Letters 24, 1999, pp.1714-1716.
[14] K. Kolacek, J. Schmidt, V. Bohacek, M. Ripa, O. Frolov, P. Vrba, J.
Straus, A. A. Rupasov, A. S. Shikanov, "Amplification of spontaneous
emission of neon-like argon in a fast gas-filled capillary discharge",
Plasma Physics Reports 34, 2008, pp. 162-168.