Speed Regulation of a Small BLDC Motor Using Genetic-Based Proportional Control

This paper presents the speed regulation scheme of a small brushless dc motor (BLDC motor) with trapezoidal back-emf consideration. The proposed control strategy uses the proportional controller in which the proportional gain, kp, is appropriately adjusted by using genetic algorithms. As a result, the proportional control can perform well in order to compensate the BLDC motor with load disturbance. This confirms that the proposed speed regulation scheme gives satisfactory results.

Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet

A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.

Satellite Beam Handoff Detection Algorithm Based On RCST Mobility Information

Since DVB-RCS has been successively implemented, the mobile communication on the multi-beam satellite communication is attractive attention. And the DVB-RCS standard sets up to support mobility of a RCST. In the case of the spot-beam satellite system, the received signal strength does not differ largely between the center and the boundary of the beam. Thus, the RSS based handoff detection algorithm is not benefit to the satellite system as a terrestrial system. Therefore we propose an Adaptive handoff detection algorithm based on RCST mobility information. Our handoff detection algorithm not only can be used as centralized handoff detection algorithm but also removes uncertainties of handoff due to the variation of RSS. Performances were compared with RSS based handoff algorithm. Simulation results show that the proposed handoff detection algorithm not only achieved better handoff and link degradation rate, but also achieved better forward link spectral efficiency.

The Use of Information Technologies in Special Education for Preparation of Individual Education Programs

In this presentation, we discuss the use of information technologies in the area of special education for teaching individuals with learning disabilities. Application software which was developed for this purpose is used to demonstrate the applicability of a database integrated information processing system to alleviate the burden of educators. The software allows the preparation of individualized education programs based on the predefined objectives, goals and behaviors.

Problems of Innovative Economy: Forming of«Innovative Society» And Innovative Receptivity

Today many countries have the ambitious purposes of long-term and continuous development: constant growth of competitiveness, maintenance of a high standard of living of the population, leadership in the world market. One of the best possible ways of achievement of these purposes is a transition of the countries to innovative economy. The paper presents the analyses of problems of forming of innovative receptivity to innovations and creation of «innovative society». Creation of an innovative culture in a society and increase of the level of prestige of innovative activity are the best ways of developing of innovative processes. The base of the analysis is a comparing of Russia and different developed countries according to the level of some indictors of innovative activity.1

Development a New Model of EEVC/WG17 Lower Legform for Pedestrian Safety

Development, calibration and validation of a threedimensional model of the Legform impactor for pedestrian crash with bumper are presented. Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. In order to prevent lower extremity injuries to a pedestrian when struck by a car, it is important to elucidate the loadings from car front structures on the lower extremities and the injury mechanism caused by these loadings. An impact test procedure with a legform addressing lower limb injuries in car pedestrian accidents has been proposed by EEVC/WG17. In this study a modified legform impactor is introduced and validated against EEVC/WG17 criteria. The finite element model of this legform is developed using LS-DYNA software. Total mass of legform impactor is 13.4 kg.Technical specifications including the mass and location of the center of gravity and moment of inertia about a horizontal axis through the respective centre of gravity in femur and tibia are determined. The obtained results of legform impactor static and dynamic tests are as specified in the EEVC/WG17.

Nonlinear Analysis of Shear Wall Using Finite Element Model

In the analysis of structures, the nonlinear effects due to large displacement, large rotation and materially-nonlinear are very important and must be considered for the reliable analysis. The non-linear fmite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of fmite element code using the standard Galerkin weighted residual formulation. Two-dimensional plane stress model was carried out to present the shear wall response. Total Lagangian formulation, which is computationally more effective, is used in the formulation of stiffness matrices and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The details of the program formulation are highlighted and the results of the analyses are presented, along with a comparison of the response of the structure with Ansys software results. The presented model in this paper can be developed for nonlinear analysis of civil engineering structures with different material behavior and complicated geometry.

A Research about How the Dividend Policy Influences the Enterprise Value on the Condition of Consecutive Cash Payoff

this article conducts a research about the relationship between cash dividend policy and enterprise value based on the data coming from the A-share listed companies over period 2005-2009. In conclusion, the enterprise value has a negative correlation with the incremental and the degressive cash dividend per share, and has a positive correlation with the stable cash dividend per share.

A New Hybrid Optimization Method for Optimum Distribution Capacitor Planning

This work presents a new algorithm based on a combination of fuzzy (FUZ), Dynamic Programming (DP), and Genetic Algorithm (GA) approach for capacitor allocation in distribution feeders. The problem formulation considers two distinct objectives related to total cost of power loss and total cost of capacitors including the purchase and installation costs. The novel formulation is a multi-objective and non-differentiable optimization problem. The proposed method of this article uses fuzzy reasoning for sitting of capacitors in radial distribution feeders, DP for sizing and finally GA for finding the optimum shape of membership functions which are used in fuzzy reasoning stage. The proposed method has been implemented in a software package and its effectiveness has been verified through a 9-bus radial distribution feeder for the sake of conclusions supports. A comparison has been done among the proposed method of this paper and similar methods in other research works that shows the effectiveness of the proposed method of this paper for solving optimum capacitor planning problem.

Market and Innovation Orientation: A Typology of Public Housing Companies in Sweden

The purpose of this paper is to develop a typology based on market orientation (MO) and innovation orientation (IO), and to illustrate to what extent housing companies in Sweden fit within this framework. A qualitative study on 11 public housing companies in the central part of Sweden has been conducted by the help of open and semi-structured questions for data collection. Four public housing company types- i.e. reactive prospector, proactive prospector, reactive defender and proactive defender have been identified by the combination of MO-IO dimensions. Future research can include other dimensions like entrepreneurship and network to observe how it particularly affects MO. An empirical study can compare public and private housing companies on the basis of MO and IO dimensions. One major contribution of the paper is the proposition of typology which can be used to describe public housing companies and deciding their future course of actions.

FEA for Teeth Preparations Marginal Geometry

Knowledge of factors, which influence stress and its distribution, is of key importance to the successful production of durable restorations. One of this is the marginal geometry. The objective of this study was to evaluate, by finite element analysis (FEA), the influence of different marginal designs on the stress distribution in teeth prepared for cast metal crowns. Five margin designs were taken into consideration: shoulderless, chamfer, shoulder, sloped shoulder and shoulder with bevel. For each kind of preparation three dimensional finite element analyses were initiated. Maximal equivalent stresses were calculated and stress patterns were represented in order to compare the marginal designs. Within the limitation of this study, the shoulder and beveled shoulder margin preparations of the teeth are preferred for cast metal crowns from biomechanical point of view.

Investigation on Fluid Flow Characteristics of the Orifice in Nuclear Power Plant

The present paper represents a methodology for investigating flow characteristics near orifice plate by using a commercial computational fluid dynamics code. The flow characteristics near orifice plate which is located in the auxiliary feedwater system were modeled via three different levels of grid and four different types of Reynolds Averaged Navier-Stokes (RANS) equations with proper near-wall treatment. The results from CFD code were compared with experimental data in terms of differential pressure through the orifice plate. In this preliminary study, the Realizable k-ε and the Reynolds stress models with enhanced wall treatment were suitable to analyze flow characteristics near orifice plate, and the results had a good agreement with experimental data.

Acceleration Analysis of a Rotating Body

The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.

Effect of Natural Fibres Inclusion in Clay Bricks: Physico-Mechanical Properties

In spite of the advent of new materials, clay bricks remain, arguably, the most popular construction materials today. Nevertheless the low cost and versatility of clay bricks cannot always be associated with high environmental and sustainable values, especially in terms of raw material sources and manufacturing processes. At the same time, the worldwide agricultural footprint is fast growing, with vast agricultural land cultivation and active expansion of the agro-based industry. The resulting large quantities of agricultural wastes, unfortunately, are not always well managed or utilised. These wastes can be recycled, such as by retrieving fibres from disposed leaves and fruit bunches, and then incorporated in brick-making. This way the clay bricks are made a 'greener' building material and the discarded natural wastes can be reutilised, avoiding otherwise wasteful landfill and harmful open incineration. This study examined the physical and mechanical properties of clay bricks made by adding two natural fibres to a clay-water mixture, with baked and non-baked conditions. The fibres were sourced from pineapple leaves (PF) and oil palm fruit bunch (OF), and added within the range of 0.25-0.75 %. Cement was added as a binder to the mixture at 5-15 %. Although the two fibres had different effects on the bricks produced, cement appeared to dominate the compressive strength. The non-baked bricks disintegrated when submerged in water, while the baked ones displayed cement-dependent characteristics in water-absorption and density changes. Interestingly, further increase in fibre content did not cause significant density decrease in both the baked and non-baked bricks.

Data Gathering Protocols for Wireless Sensor Networks

Sensor network applications are often data centric and involve collecting data from a set of sensor nodes to be delivered to various consumers. Typically, nodes in a sensor network are resource-constrained, and hence the algorithms operating in these networks must be efficient. There may be several algorithms available implementing the same service, and efficient considerations may require a sensor application to choose the best suited algorithm. In this paper, we present a systematic evaluation of a set of algorithms implementing the data gathering service. We propose a modular infrastructure for implementing such algorithms in TOSSIM with separate configurable modules for various tasks such as interest propagation, data propagation, aggregation, and path maintenance. By appropriately configuring these modules, we propose a number of data gathering algorithms, each of which incorporates a different set of heuristics for optimizing performance. We have performed comprehensive experiments to evaluate the effectiveness of these heuristics, and we present results from our experimentation efforts.

Modern Method for Solving Pure Integer Programming Models

In this paper, all variables are supposed to be integer and positive. In this modern method, objective function is assumed to be maximized or minimized but constraints are always explained like less or equal to. In this method, choosing a dual combination of ideal nonequivalent and omitting one of variables. With continuing this act, finally, having one nonequivalent with (n-m+1) unknown quantities in which final nonequivalent, m is counter for constraints, n is counter for variables of decision.

Design of Composite Risers for Minimum Weight

The use of composite materials in offshore engineering for deep sea oil production riser systems has drawn considerable interest due to the potential weight savings and improvement in durability. The design of composite risers consists of two stages: (1) local design based on critical local load cases, and (2) global analysis of the full length composite riser under global loads and assessment of critical locations. In the first stage, eight different material combinations were selected and their laminate configurations optimised under local load considerations. Stage two includes a final local stress analysis of the critical sections of the riser under the combined loads determined in the global analysis. This paper describes two design methodologies of the composite riser to provide minimum structural weight and shows that the use of off angle fibre orientations in addition to axial and hoop reinforcements offer substantial weight savings and ensure the structural capacity.

In vitro Anti-tubercular Screening of Newly Synthesized Benzimidazole Derivatives

A series of 1-(1H-benzimidazol-2-yl)-3-(substituted phenyl)-2-propen-1-one were allowed to react with hydrazine hydrate and phenyl hydrazine in submitted reactions to get pyrazoline and phenyl pyrazoline derivatives. All the compounds entered for screening at the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) for their in vitro antibacterial activity against Mycobacterium tuberculosis H37Rv strain (ATCC 27294) using Microplate Alamar Blue Assay (MABA) susceptibility test. The results expressed as MIC (minimum inhibitory concentration) in μg/mL. Among the fifteen compounds, eight compounds were found to have MIC values less than 10 μg/mL. These were subjected for cytotoxicity assay in VERO cells to determine CC50 (cytotoxic concentration 50%) values and finally SI (Selectivity Index) were calculated. Compound (XV) 2-[5-(4- fluorophenyl)-1-phenyl-4,5-dihydro-1H-3-pyrazolyl]-1Hbenzimidazole was considered the best candidate of the series that could be a good starting point to develop new lead compounds in the fight against tuberculosis.

Work Structuring and the Feasibility of Application to Construction Projects in Vietnam

Design should be viewed concurrently by three ways as transformation, flow and value generation. An innovative approach to solve design – related problems is described as the integrated product - process design. As a foundation for a formal framework consisting of organizing principles and techniques, Work Structuring has been developed to guide efforts in the integration that enhances the development of operation and process design in alignment with product design. Vietnam construction projects are facing many delays, and cost overruns caused mostly by design related problems. A better design management that integrates product and process design could resolve these problems. A questionnaire survey and in – depth interviews were used to investigate the feasibility of applying Work Structuring to construction projects in Vietnam. The purpose of this paper is to present the research results and to illustrate the possible problems and potential solutions when Work Structuring is implemented to construction projects in Vietnam.

Prestressed Concrete Girder Bridges Using Large 0.7 Inch Strands

The National Bridge Inventory (NBI) includes more than 600,000 bridges within the United States of America. Prestressed concrete girder bridges represent one of the most widely used bridge systems. The majority of these girder bridges were constructed using 0.5 and 0.6 inch diameter strands. The main impediments to using larger strand diameters are: 1) lack of prestress bed capacities, 2) lack of structural knowledge regarding the transfer and development length of larger strands, and 3) the possibility of developing wider end zone cracks upon strand release. This paper presents a study about using 0.7 inch strands in girder fabrication. Transfer and development length were evaluated, and girders were fabricated using 0.7 inch strands at different spacings. Results showed that 0.7 inch strands can be used at 2.0 inch spacing without violating the AASHTO LRFD Specifications, while attaining superior performance in shear and flexure.