Saudi Twitter Corpus for Sentiment Analysis

Sentiment analysis (SA) has received growing attention in Arabic language research. However, few studies have yet to directly apply SA to Arabic due to lack of a publicly available dataset for this language. This paper partially bridges this gap due to its focus on one of the Arabic dialects which is the Saudi dialect. This paper presents annotated data set of 4700 for Saudi dialect sentiment analysis with (K= 0.807). Our next work is to extend this corpus and creation a large-scale lexicon for Saudi dialect from the corpus.

Impact of Mixing Parameters on Homogenization of Borax Solution and Nucleation Rate in Dual Radial Impeller Crystallizer

Interaction between mixing and crystallization is often ignored despite the fact that it affects almost every aspect of the operation including nucleation, growth, and maintenance of the crystal slurry. This is especially pronounced in multiple impeller systems where flow complexity is increased. By choosing proper mixing parameters, what closely depends on the knowledge of the hydrodynamics in a mixing vessel, the process of batch cooling crystallization may considerably be improved. The values that render useful information when making this choice are mixing time and power consumption. The predominant motivation for this work was to investigate the extent to which radial dual impeller configuration influences mixing time, power consumption and consequently the values of metastable zone width and nucleation rate. In this research, crystallization of borax was conducted in a 15 dm3 baffled batch cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was performed using two straight blade turbines (4-SBT) mounted on the same shaft that generated radial fluid flow. Experiments were conducted at different values of N/NJS ratio (impeller speed/ minimum impeller speed for complete suspension), D/T ratio (impeller diameter/crystallizer diameter), c/D ratio (lower impeller off-bottom clearance/impeller diameter), and s/D ratio (spacing between impellers/impeller diameter). Mother liquor was saturated at 30°C and was cooled at the rate of 6°C/h. Its concentration was monitored in line by Na-ion selective electrode. From the values of supersaturation that was monitored continuously over process time, it was possible to determine the metastable zone width and subsequently the nucleation rate using the Mersmann’s nucleation criterion. For all applied dual impeller configurations, the mixing time was determined by potentiometric method using a pulse technique, while the power consumption was determined using a torque meter produced by Himmelstein & Co. Results obtained in this investigation show that dual impeller configuration significantly influences the values of mixing time, power consumption as well as the metastable zone width and nucleation rate. A special attention should be addressed to the impeller spacing considering the flow interaction that could be more or less pronounced depending on the spacing value.

Online Topic Model for Broadcasting Contents Using Semantic Correlation Information

This paper proposes a method of learning topics for broadcasting contents. There are two kinds of texts related to broadcasting contents. One is a broadcasting script, which is a series of texts including directions and dialogues. The other is blogposts, which possesses relatively abstracted contents, stories, and diverse information of broadcasting contents. Although two texts range over similar broadcasting contents, words in blogposts and broadcasting script are different. When unseen words appear, it needs a method to reflect to existing topic. In this paper, we introduce a semantic vocabulary expansion method to reflect unseen words. We expand topics of the broadcasting script by incorporating the words in blogposts. Each word in blogposts is added to the most semantically correlated topics. We use word2vec to get the semantic correlation between words in blogposts and topics of scripts. The vocabularies of topics are updated and then posterior inference is performed to rearrange the topics. In experiments, we verified that the proposed method can discover more salient topics for broadcasting contents.

High Specific Speed in Circulating Water Pump Can Cause Cavitation, Noise and Vibration

Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge recirculation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging, if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently, and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal recirculation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. Author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios >1.5, for future projects and Nss be limited to 8500 - 9000 for cavitation free operation.

Mitigation of Electromagnetic Interference Generated by GPIB Control-Network in AC-DC Transfer Measurement System

The field of instrumentation electronics is undergoing an explosive growth, due to its wide range of applications. The proliferation of electrical devices in a close working proximity can negatively influence each other’s performance. The degradation in the performance is due to electromagnetic interference (EMI). This paper investigates the negative effects of electromagnetic interference originating in the General Purpose Interface Bus (GPIB) control-network of the AC-DC transfer measurement system. Remedial measures of reducing measurement errors and failure of range of industrial devices due to EMI have been explored. The ACDC transfer measurement system was analysed for the commonmode (CM) EMI effects. Further investigation of coupling path as well as much accurate identification of noise propagation mechanism has been outlined. To prevent the occurrence of common-mode (ground loops) which was identified between the GPIB system control circuit and the measurement circuit, a microcontroller-driven GPIB switching isolator device was designed, prototyped, programmed and validated. This mitigation technique has been explored to reduce EMI effectively.

A Retrospective Drug Utilization Study of Antiplatelet Drugs in Patients with Ischemic Heart Disease

Objective: Acute coronary syndrome is a clinical condition encompassing ST segments elevation myocardial infraction, Non ST segment is elevation myocardial infraction and un stable angina is characterized by ruptured coronary plaque, stress and myocardial injury. Angina pectoris is a pressure like pain in the chest that is induced by exertion or stress and relived with in the minute after cessation of effort or using sublingual nitroglycerin. The present research was undertaken to study the drug utilization pattern of antiplatelet drugs for the ischemic heart disease in a tertiary care hospital. Method: The present study is retrospective drug utilization study and study period is 6months. The data is collected from the discharge case sheet of general medicine department from medical department Rajiv Gandhi institute of medical sciences, Kadapa. The tentative sample size fixed was 250 patients. Out of 250 cases 19 cases was excluded because of unrelated data. Results: A total of 250 prescriptions were collected for the study according to the inclusion criteria 233 prescriptions were diagnosed with ischemic heart disease 17 prescriptions were excluded due to unrelated information. out of 233 prescriptions 128 are male (54.9%) and 105 patients are were female (45%). According to the gender distribution, the prevalence of ischemic heart disease in males are 90 (70.31%) and females are 39 (37.1%). In the same way the prevalence of ischemic heart disease along with cerebrovascular disease in males are 39 (29.6%) and females are 66 (62.6%). Conclusion: We found that 94.8% of drug utilization of antiplatelet drugs was achieved in the Rajiv Gandhi institute of medical sciences, Kadapa from 2011-2012.

Modeling of a Vehicle Wheel System Having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Condition Monitoring for Controlling the Stability of the Rotating Machinery

In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The global measurement and analysis of vibration on the cement separator RC500 is carried, the points of measurement used are radial dots, vertical, horizontal and oblique. The measures of trends and spectral analysis for reconnaissance of the main anomalies, the main defects in the separator and manifestation, the results prove that the defects effect has a negative effect on the stability of the rotor. Experimentally the study of the rotor in transient system allowed to determine the vibratory responses due to the unbalances and various excitations.

Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals

The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.

Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Systolic Blood Pressure and Its Determinants: Study in a Population Attending Pharmacies in a Portuguese Coastal City

Hypertension is a common condition causing cardio and cerebrovascular complications. Portugal has one of the highest mortality rates from stroke and a high prevalence of hypertension. Systolic Blood Pressure (SBP) is an important risk factor for cardiovascular events (myocardial infarction and stroke) and premature mortality, particularly in the elderly population. The present study aims to estimate the prevalence of hypertension in a Portuguese population living in a coastal city and to identify some of its determinants (namely gender, age, the body mass index and physical activity frequency). A total of 91 adults who attended three pharmacies of a coastal city in the center of Portugal, between May and August of 2013 were evaluated. Attendants who reported to have diabetes or taking antihypertensive drugs in the 2 previous weeks were excluded from the study. Sociodemographic factors, BMI, habits of exercise and BP were assessed. Hypertension was defined as blood pressure ≥140/90 mmHg. The majority of the studied population was constituted by women (75.8%), with a mean age of 54.2±1.6 years old, married or living in civil union and that had completed secondary school or had higher education (40%). They presented a mean BMI of 26.2±4.76 Kg/m2., and were sedentary. The mean BP was 127.0±17.77mmHg- 74.69 ± 9.53. In this population we found 4.3% of people with hypertension and 16.1% with normal high blood pressure. Men exhibit a tendency to present higher systolic blood pressure values than women. Of all the factors considered, SBP values also tended to be higher with age and higher BMI values. Despite the fact that the mean values of SBP did not present values higher than 140 mmHg we must be concerned because the studied population is undiagnosed for hypertension. Although this is a preliminary study, it might be a prelude to the upcoming research about the underlying factors responsible for the occurrence of SBP.

Flow of a Second Order Fluid through Constricted Tube with Slip Velocity at Wall Using Integral Method

The steady flow of a second order fluid through constricted tube with slip velocity at wall is modeled and analyzed theoretically. The governing equations are simplified by implying no slip in radial direction. Based on Karman Pohlhausen procedure polynomial solution for axial velocity profile is presented. Expressions for pressure gradient, shear stress, separation and reattachment points, and radial velocity are also calculated. The effect of slip and no slip velocity on magnitude velocity, shear stress, and pressure gradient are discussed and depicted graphically. It is noted that when Reynolds number increases magnitude velocity of the fluid decreases in both slip and no slip conditions. It is also found that the wall shear stress, separation, and reattachment points are strongly affected by Reynolds number.

Comparison of Polynomial and Radial Basis Kernel Functions based SVR and MLR in Modeling Mass Transfer by Vertical and Inclined Multiple Plunging Jets

Presently various computational techniques are used in modeling and analyzing environmental engineering data. In the present study, an intra-comparison of polynomial and radial basis kernel functions based on Support Vector Regression and, in turn, an inter-comparison with Multi Linear Regression has been attempted in modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ multiple plunging jets (varying from 1 to 16 numbers). The data set used in this study consists of four input parameters with a total of eighty eight cases, forty four each for vertical and inclined multiple plunging jets. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 along with corresponding root mean square error values of 0.0025 and 0.0020 were achieved by using polynomial and radial basis kernel functions based Support Vector Regression respectively. An intra-comparison suggests improved performance by radial basis function in comparison to polynomial kernel based Support Vector Regression. Further, an inter-comparison with Multi Linear Regression (correlation coefficient = 0.973 and root mean square error = 0.0024) reveals that radial basis kernel functions based Support Vector Regression performs better in modeling and estimating mass transfer by multiple plunging jets.

Ecoliteracy and Pedagogical Praxis in the Multidisciplinary University Greenhouse toward the Food Security Strengthening

One of the challenges that higher education faces is to find how to approach the sustainability in an inclusive way to the student within all the different academic areas, how to move the sustainable development from the abstract field to the operational field. This research comes from the ecoliteracy and the pedagogical praxis as tools for rebuilding the teaching processes inside of universities. The purpose is to determine and describe which are the factors involved in the process of learning particularly in the Greenhouse-School Siembra UV. In the Greenhouse-School Siembra UV, of the University of Veracruz, are cultivated vegetables, medicinal plants and small cornfields under the usage of eco-technologies such as hydroponics, Wickingbed and Hugelkultur, which main purpose is the saving of space, labor and natural resources, as well as function as agricultural production alternatives in the urban and periurban zones. The sample was formed with students from different academic areas and who are actively involved in the greenhouse, as well as institutes from the University of Veracruz and governmental and nongovernmental departments. This project comes from a pedagogic praxis approach, from filling the needs that the different professional profiles of the university students have. All this with the purpose of generate a pragmatic dialogue with the sustainability. It also comes from the necessity to understand the factors that intervene in the students’ praxis. In this manner is how the students are the fundamental unit in the sphere of sustainability. As a result, it is observed that those University of Veracruz students who are involved in the Greenhouse-school, Siembra UV, have enriched in different levels the sense of urban and periurban agriculture because of the diverse academic approaches they have and the interaction between them. It is concluded that the ecotechnologies act as fundamental tools for ecoliteracy in society, where it is strengthen the nutritional and food security from a sustainable development approach.

Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Simulation and Analysis of Control System for a Solar Desalination System

Fresh water is one of the resources which is getting depleted day by day. A wise method to address this issue is by the application of renewable energy-sun irradiation and by means of decentralized, cheap, energetically self-sufficient, robust and simple to operate plants, distillates can be obtained from sea, river or even sewage. Solar desalination is a technique used to desalinate water using solar energy. The present work deals with the comprehensive design and simulation of solar tracking system using LabVIEW, temperature and mass flow rate control of the solar desalination plant using LabVIEW and also analysis of single phase inverter circuit with LC filters for solar pumping system in MATLAB. The main objective of this work is to improve the performance of solar desalination system using automatic tracking system, output control using temperature and mass flow rate control system and also to reduce the harmonic distortion in the solar pumping system by means of LC filters. The simulation of single phase inverter was carried out using MATLAB and the output waveforms were analyzed. Simulations were performed for optimum output temperature control, which in turn controls the mass flow rate of water in the thermal collectors. Solar tracking system was accomplished using LABVIEW and was tested successfully. The thermal collectors are tracked in accordance with the sun’s irradiance levels, thereby increasing the efficiency of the thermal collectors.

A Study on Explicitation Strategies Employed in Persian Subtitling of English Crime Movies

The present study seeks to investigate the application of expansion strategy in Persian subtitles of English crime movies. More precisely, this study aims at classifying the different types of expansion used in subtitles as well as investigating the appropriateness or inappropriateness of the application of each type. To achieve this end, three movies; namely, The Net (1995), Contact (1997) and Mission Impossible 2 (2000), available with Persian subtitles, were selected for the study. To collect the data, the above mentioned movies were watched and those parts of the Persian subtitles in which expansion had been used were identified and extracted along with their English dialogs. Then, the extracted Persian subtitles were classified based on the reason that led to expansion in each case. Next, the appropriateness or inappropriateness of using expansion in the extracted Persian subtitles was descriptively investigated. Finally, an equivalent not containing any expansion was proposed for those cases in which the meaning could be fully transferred without this strategy. The findings of the study indicated that the reasons range from explicitation (explicitation of visual, co-textual and contextual information), mistranslation and paraphrasing to the preferences of subtitlers. Furthermore, it was found that the employment of expansion strategy was inappropriate in all cases except for those caused by explicitation of contextual information since correct and shorter equivalents which were equally capable of conveying the intended meaning could be posited for the original dialogs.

Applying the Regression Technique for Prediction of the Acute Heart Attack

Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in early diagnosis of the acute heart attacks is obvious. The main purpose of this study would be to enable patients to become better informed about their condition and to encourage them to seek professional care at an earlier stage in the appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea and vomiting, were selected as the main features.

Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation

This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.