Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering

The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The processed bulk nanocrystalline alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti. These phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.

Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Heterogeneous Earliest First Min- Min Artificial Bee Colony (CHMM-ABC), to optimally schedule jobs for the available resources. The proposed model utilizes a novel Heterogeneous Earliest Finish Time (HEFT) Heuristic Algorithm along with Min-Min algorithm to identify the initial food source. Simulation results show the performance improvement of the proposed algorithm over other swarm intelligence techniques.

Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt

Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosa (PS1), and Pseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazinon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 10^12CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated.

Study of Natural Patterns on Digital Image Correlation Using Simulation Method

Digital image correlation (DIC) is a contactless fullfield displacement and strain reconstruction technique commonly used in the field of experimental mechanics. Comparing with physical measuring devices, such as strain gauges, which only provide very restricted coverage and are expensive to deploy widely, the DIC technique provides the result with full-field coverage and relative high accuracy using an inexpensive and simple experimental setup. It is very important to study the natural patterns effect on the DIC technique because the preparation of the artificial patterns is time consuming and hectic process. The objective of this research is to study the effect of using images having natural pattern on the performance of DIC. A systematical simulation method is used to build simulated deformed images used in DIC. A parameter (subset size) used in DIC can have an effect on the processing and accuracy of DIC and even cause DIC to failure. Regarding to the picture parameters (correlation coefficient), the higher similarity of two subset can lead the DIC process to fail and make the result more inaccurate. The pictures with good and bad quality for DIC methods have been presented and more importantly, it is a systematic way to evaluate the quality of the picture with natural patterns before they install the measurement devices.

Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques

Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound (BB) method to simplify the texts.

Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Stereo Motion Tracking

Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.

Performance Evaluation of an Efficient Asynchronous Protocol for WDM Ring MANs

The idea of the asynchronous transmission in wavelength division multiplexing (WDM) ring MANs is studied in this paper. Especially, we present an efficient access technique to coordinate the collisions-free transmission of the variable sizes of IP traffic in WDM ring core networks. Each node is equipped with a tunable transmitter and a tunable receiver. In this way, all the wavelengths are exploited for both transmission and reception. In order to evaluate the performance measures of average throughput, queuing delay and packet dropping probability at the buffers, a simulation model that assumes symmetric access rights among the nodes is developed based on Poisson statistics. Extensive numerical results show that the proposed protocol achieves apart from high bandwidth exploitation for a wide range of offered load, fairness of queuing delay and dropping events among the different packets size categories.

Heterophase Polymerization of Pyrrole and Thienyl End Capped Ethoxylated Nonyl Phenol by Iron (III) Chloride

This study presents synthesis of novel block copolymers of thienyl end capped ethoxylated nonyl phenol and pyrrole via chemical oxidative polymerization. Ethoxylated nonyl phenol (ENP) was reacted with 2-thiophenecarbonyl chloride in order to synthesize a macromonomer containing thienyl end-group (ENPThC). Then copolymers of ENP-ThC and pyrrole were synthesized by chemical oxidative polymerization using iron (III) chloride as an oxidant. ENP-ThC served both as a macromonomer and an emulsifier for pyrrole with poor solubility in water. The synthesized block copolymers (ENP-ThC-b-PPy) were characterized by spectroscopic analysis and the electrical conductivities were investigated with 4-point probe technique.

System Reduction Using Modified Pole Clustering and Modified Cauer Continued Fraction

A mixed method by combining modified pole clustering technique and modified cauer continued fraction is proposed for reducing the order of the large-scale dynamic systems. The denominator polynomial of the reduced order model is obtained by using modified pole clustering technique while the coefficients of the numerator are obtained by modified cauer continued fraction. This method generated 'k' number of reduced order models for kth order reduction. The superiority of the proposed method has been elaborated through numerical example taken from the literature and compared with few existing order reduction methods.

Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach

Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.

Design and Development of Constant Stress Composite Cantilever Beam

Composite materials, due to their unique properties such as high strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. Traditionally, tapered laminated composite structures are manufactured using autoclave manufacturing process by ply drop off technique. Autoclave manufacturing though very powerful suffers from high capital investment and higher energy consumption. As per the current trends in composite manufacturing, Out of Autoclave (OoA) processes are looked as emerging technologies for manufacturing the structural composite components for aerospace and defense applications. However, there is a need for improvement among these processes to make them reliable and consistent. In this paper, feasibility of using out of autoclave process to manufacture the variable thickness cantilever beam is discussed. The minimum weight design for the composite beam is obtained using constant stress beam concept by tailoring the thickness of the beam. Ply drop off techniques was used to fabricate the variable thickness beam from glass/epoxy prepregs. Experiments were conducted to measure bending stresses along the span of the cantilever beam at different intervals by applying the concentrated load at the free end. Experimental results showed that the stresses in the bean at different intervals were constant. This proves the ability of OoA process to manufacture the constant stress beam. Finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results and thus validated design and manufacturing approach used.

Development of a System for Measuring the Three-Axis Pedal Force in Cycling and Its Applications

For cycling, the analysis of the pedal force is one of the important factors in the study of exercise ability assessment and overuse injuries. In past studies, a two-axis measurement sensor was used at the sagittal plane to measure the force only in the anterior, posterior, and vertical directions and to analyze the loss of force and the injury on the frontal plane due to the forces in the right and left directions. In this study, which is a basic study on diverse analyses of the pedal force that consider the forces on the sagittal plane and the frontal plane, a three-axis pedal force measurement sensor was developed to measure the anterior-posterior (Fx), medio-lateral (Fz), and vertical (Fy) forces. The sensor was fabricated with a size and shape similar to those of the general flat pedal, and had a 550g weight that allowed smooth pedaling. Its measurement range was ±1000 N for Fx and Fz and ±2000 N for Fy, and its non-linearity, hysteresis, and repeatability were approximately 0.5%. The data were sampled at 1000 Hz using a signal collector. To use the developed sensor, the pedaling efficiency (index of efficiency, IE) and the range of left and right (medio-lateral, ML) forces were measured with two seat heights (low and high). The results of the measurement showed that the IE was higher and the force range in the ML direction was lower with the high position than with the low position. The developed measurement sensor and its application results will be useful in understanding and explaining the complicated pedaling technique, and will enable diverse kinematic analyses of the pedal force on the sagittal plane and the frontal plane.

Air Pollution and Respiratory-Related Restricted Activity Days in Tunisia

This paper focuses on the assessment of the air pollution and morbidity relationship in Tunisia. Air pollution is measured by ozone air concentration and the morbidity is measured by the number of respiratory-related restricted activity days during the 2-week period prior to the interview. Socioeconomic data are also collected in order to adjust for any confounding covariates. Our sample is composed by 407 Tunisian respondents; 44.7% are women, the average age is 35.2, near 69% are living in a house built after 1980, and 27.8% have reported at least one day of respiratory-related restricted activity. The model consists on the regression of the number of respiratory-related restricted activity days on the air quality measure and the socioeconomic covariates. In order to correct for zero-inflation and heterogeneity, we estimate several models (Poisson, negative binomial, zero inflated Poisson, Poisson hurdle, negative binomial hurdle and finite mixture Poisson models). Bootstrapping and post-stratification techniques are used in order to correct for any sample bias. According to the Akaike information criteria, the hurdle negative binomial model has the greatest goodness of fit. The main result indicates that, after adjusting for socioeconomic data, the ozone concentration increases the probability of positive number of restricted activity days.

Coordinated Multi-Point Scheme Based On Channel State Information in MIMO-OFDM System

Recently, increasing the quality of experience (QoE) is an important issue. Since performance degradation at cell edge extremely reduces the QoE, several techniques are defined at LTE/LTE-A standard to remove inter-cell interference (ICI). However, the conventional techniques have disadvantage because there is a trade-off between resource allocation and reliable communication. The proposed scheme reduces the ICI more efficiently by using channel state information (CSI) smartly. It is shown that the proposed scheme can reduce the ICI with fewer resources.

Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination

In the scope of application of technical textiles, Non- Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitchfree method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxy-fluorination was used. The modification of carbonfibres by oxy-fluorination was investigated via scanning electron microscope, X-ray photoelectron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.

Enhanced Disk-Based Databases Towards Improved Hybrid In-Memory Systems

In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable inmemory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of diskbased database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of inmemory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.

Crack Width Evaluation for Flexural RC Members with Axial Tension

Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools supports the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user friendly and ready to evolve for a greater spectrum of section sizes and materials.

Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Holomorphic Prioritization of Sets within Decagram of Strategic Decision Making of POSM Using Operational Research (OR): Analytic Hierarchy Process (AHP) Analysis

There is decagram of strategic decisions of operations and production/service management (POSM) within operational research (OR) which must collate, namely: design, inventory, quality, location, process and capacity, layout, scheduling, maintain ace, and supply chain. This paper presents an architectural configuration conceptual framework of a decagram of sets decisions in a form of mathematical complete graph and abelian graph. Mathematically, a complete graph is undirected (UDG), and directed (DG) a relationship where every pair of vertices is connected, collated, confluent, and holomorphic. There has not been any study conducted which, however, prioritizes the holomorphic sets which of POMS within OR field of study. The study utilizes OR structured technique known as The Analytic Hierarchy Process (AHP) analysis for organizing, sorting and prioritizing(ranking) the sets within the decagram of POMS according to their attribution (propensity), and provides an analysis how the prioritization has real-world application within the 21st century.